
Evaluation of Missouri’s NBI Data to Predict the 
Deterioration of Bridges 

 April 2022 
 Final Report 

 Project number TR202012 
 MoDOT Research Report number cmr 22-005

PREPARED BY: 

Glenn Washer 

John Myers 

Mohammad Hammed 

Henry Brown 

Missouri Center for Transportation Innovation 

PREPARED FOR: 

Missouri Department of Transportation 

Construction and Materials Division, Research Section 



Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
cmr 22-005

4. Title and Subtitle 5. Report Date
Evaluation of Missouri’s NBI Data to Predict the Deterioration of Bridges February 2022

Published: April 2022
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Glenn Washer, John Myers, Mohammad Hammed, and Henry Brown
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
University of Missouri
Civil and Environmental Engineering
E2509 Lafferre Hall
Columbia, Missouri 65211

11. Contract or Grant No.

MoDOT project # TR202012

12. Sponsoring Organization Name and Address
Missouri Department of Transportation (SPR-B) 
Construction and Materials Division 
P.O. Box 270 
Jefferson City, Missouri 65102 

13. Type of Report and Period Covered 
Final Report (April 2020-September 2021)
14. Sponsoring Agency Code

15. Supplementary Notes
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. MoDOT research 
reports are available in the Innovation Library at https://www.modot.org/research-publications. 
16. Abstract
The objectives of this study were to develop deterioration curves for state-owned bridges in Missouri, study certain parameters 
that affect structure deterioration, and develop recommendations for cost effective designs. The study used inspection history data 
stored in the National Bridge Inventory (NBI). NBI data from 1983 through 2019 was used to determine the inspection histories 
and Condition Ratings (CR) for bridge components and culverts. Two different deterioration models were used to analyze these 
data. The Kaplan-Meir survival methodology was used to determine the Time in Condition Rating (TICR) and hazard functions 
for primary bridge components and culverts. Cox regression analysis was used to study parameters that affect structure 
deterioration. Parameters studied included the rate of salt application, span length, traffic volume, and environmental conditions. 
The performance of cast-in-place (CIP) bridge decks in different districts in the state was also studied.  
The results showed that the deterioration patterns for structures generally had an inflection point at CR 5, where deterioration 
rates increased as compared with CR 6,7, and 8. The results also demonstrated that the application of salt to the roadway to 
prevent icing had a significant impact on the deterioration of all structures, and its impact was commonly at least twice that of 
any other parameter studied. It was also found that increasing span length increased the rate of deterioration. Traffic volume as 
measured by Average Daily Traffic (ADT) and Average Daily Truck Traffic (ADTT) did not have a statistically significant effect 
on the deterioration of bridges. It was also found that the deterioration of bridge decks was different in different districts, and 
reliability curves were developed for each district to aid engineers in decision-making regarding maintenance and repair.  
Recommendations from the research included increasing the use of preservation strategies to maintain bridges in CR 6,7, and 8, 
where deterioration rates are lower as compared with CR 5, 4, and 3. Actions to prevent exposure to deicing chemicals, many of 
which are already applied in some cases, were described. Looking forward, research results should be considered as one factor in 
the selection of materials and geometry for new bridges. 

18. Distribution Statement17. Key Words
Bridge; Cox regression; Deterioration; Inventory; Modeling; Salt No restrictions.
19. Security Classification (of this
report)

20. Security Classification (of this
page)

21. No. of Pages 22. Price

Unclassified. Unclassified. 100 NA 
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

https://www.modot.org/research-publications


 

Evaluation of Missouri’s NBI Data to Predict the Deterioration of 
Bridges 

TR202012 
Final Report 

December 2021 
 
 

Principal Investigator 
Glenn Washer, Ph.D., P.E., Professor 

University of Missouri 
 

Co-Principal Investigator 
John Myers, PhD, PE 

Missouri University of Science and Technology 
 

Henry Brown, P.E., Research Engineer 
University of Missouri 

 
Post-Doctoral Associate 

Mohammad Hammed, P.E., Ph.D. 
University of Missouri 

 
 

Authors 
Glenn Washer, John Myers, Mohammad Hammed, and Henry Brown 

 
 
 
 
 

A report from 
Missouri Center for Transportation Innovation 

University of Missouri 
Civil and Environmental Engineering 

E2509 Lafferre Hall 
Columbia, Missouri 65211 

 
 



iii 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ........................................................................................................... VII 

EXECUTIVE SUMMARY ......................................................................................................... VII 

INTRODUCTION ...........................................................................................................................1 

BACKGROUND .............................................................................................................................4 

Description of the Statistical Methods .................................................................................5 
Kaplan-Meier Survival Analysis..............................................................................6 
Cox Regression Analysis .......................................................................................11 
Model Assumptions ...............................................................................................12 

Data Preparation.................................................................................................................12 
Structure Number Consistency ..............................................................................13 

Data for Analysis ...............................................................................................................16 
Age and Era of Construction..................................................................................17 
Materials and Type of Construction ......................................................................18 
Traffic Volume.......................................................................................................21 
Condition Rating for Decks, Superstructures, Substructures, and Culverts ..........22 
Location and Environmental Exposure ..................................................................23 

RESULTS ......................................................................................................................................28 

Reliability Analysis for CIP Decks ....................................................................................28 
Service Life and Hazard for CIP Decks .................................................................29 
CIP Decks on Different Superstructures ................................................................33 
Cox Regression Analysis for CIP Decks ...............................................................36 

Reliability Analysis for Superstructures ............................................................................47 
Cox Regression Analysis for Superstructures........................................................52 

Reliability Analysis for Substructures ...............................................................................56 
Cox Regression Analysis for Substructures ...........................................................59 

Reliability Analysis for Culverts .......................................................................................61 
Cox Regression Analysis for Culverts ...................................................................64 

CONCLUSIONS............................................................................................................................67 

Summary/Review ...............................................................................................................67 
Age of the Structure and Era of Construction ....................................................................69 
Span Length .......................................................................................................................70 
Condition Assessment ........................................................................................................71 
Material Type .....................................................................................................................73 
Traffic Volume...................................................................................................................73 
Location and Environmental Exposure. .............................................................................74 
Methods for Implementing Research Results ....................................................................75 
Recommendations ..............................................................................................................81 

 



iv 

LIST OF FIGURES 

Figure 1. K-M deterioration models for steel superstructures in Missouri. ...................................10 
Figure 2. Bar graph showing the results of correcting NBI data for bridges and culverts in 

Missouri. ............................................................................................................................14 
Figure 3. Bar graph showing the years of inspection data for bridges in Missouri. ......................15 
Figure 4. Scatter plot showing snow against salt for 2001-2010. ..................................................26 
Figure 5. Figure showing MoDOT's seven districts. .....................................................................27 
Figure 6. K-M curve showing the reliability of CIP decks for CR 3-8. ........................................29 
Figure 7. Graph showing the service life for CIP decks statewide based on median reliability in 

CR 3 – 8, showing A) quartiles and B) confidence intervals. ............................................31 
Figure 8. Plot showing cumulative hazard for CIP decks in CR 3-8. ............................................32 
Figure 9. Estimated service life graph for CIP decks on different superstructure types. ..............36 
Figure 10. Plot showing the relationship between the service life of the CIP decks vs. the 

quantity of salt used by districts.........................................................................................46 
Figure 11. Graphs showing the effect of salt use increasing from 2.85 to 3.85 tons/mile for a CIP 

deck on PSC continuous girder. .........................................................................................47 
Figure 12. K-M graphs showing the reliability curves for steel continuous girders in CR 3 – 8. .49 
Figure 13. Graph showing the service life based on median reliability for steel continuous girders 

in CR 3 – 8. ........................................................................................................................50 
Figure 14. Service life plot for different types of superstructures. ................................................51 
Figure 15. Effect of span length on deterioration of steel and PSC continuous superstructures. ..56 
Figure 16. K-M graphs showing the reliability curves for substructures. .....................................57 
Figure 17. Graph showing the service life based on median reliability for substructures in CR 3 – 

8..........................................................................................................................................58 
Figure 18. Graph showing the cumulative hazard for substructures. ............................................59 
Figure 19. Graph showing the reliability curve for culverts using the K_M method. ...................63 
Figure 20. Graph showing the time span (service life) for culverts stay in CR 3 – 8 based on 

median reliability. ..............................................................................................................64 
Figure 21.  Linear deterioration curves for structures in Missouri showing A) typical 

superstructure types and B) CIP decks, substructures, and culverts. .................................77 
Figure 22. Plot showing CIP deck reliability (A) and estimated median service life (B). ............78 
Figure 23. Example of a concrete coating applied to beam shelf under expansion joint to protect 

concrete substructure, Fulton, MO.....................................................................................83 
 

 



v 

LIST OF TABLES 

Table 1. Number of bridges/culverts. ............................................................................................15 
Table 2. Bridges and culverts information used for data analysis. ................................................17 
Table 3. Combinations of superstructures types and materials used to from six bridge families for 

analysis. ..............................................................................................................................20 
Table 4. Statistical measures for structure length and maximum span length. ..............................21 
Table 5. List of different deck types for state-owned bridges. ......................................................21 
Table 6. Table showing statistical measures for ADT and ADTT. ...............................................22 
Table 7. Table showing statistical measures for freeze/thaw cycles and snow days. ....................24 
Table 8. Table showing statistical measures for salt used by counties from 2001-2010. ..............25 
Table 9. Table showing counts of different superstructure types with CIP decks. ........................34 
Table 10. Count of CIP decks with different CR for each superstructure family. .........................34 
Table 11. Table showing TICR and service life for CIP decks on different superstructure types.

............................................................................................................................................35 
Table 12. Table showing maximum likelihood estimate for CIP deck covariates. .......................37 
Table 13. Table showing Cox regression model output for CIP decks showing superstructure 

type, age, and district covariates results.............................................................................38 
Table 14. Table showing Cox regression model output for CIP decks showing salt application, 

freeze/thaw, and snow covariate results. ............................................................................39 
Table 15. Table showing the effect of covariates on cast-in-place bridge decks. .........................42 
Table 16. Comparison of the effect of 1 ton of salt per mile in different districts. .......................43 
Table 17. Table showing the effect of covariates on cast-in-place bridge decks. .........................44 
Table 18. Table showing the relationship between the amount of salt used by districts vs. the CIP 

decks service life. ...............................................................................................................45 
Table 19. Table showing different types of superstructures, their count, and their combination for 

analysis. ..............................................................................................................................48 
Table 20. Ranking of SS types showing 25, 50, and 75 percentiles and average service life based 

on TICR. ............................................................................................................................52 
Table 21. Table showing the effect of covariates on superstructures in terms of hazard ratios. ...53 
Table 22. Comparison of superstructure type at mean age in TICR and mean maximum span 

length..................................................................................................................................55 
Table 23. Table showing counts of substructures for each CR and as a total. ...............................56 
Table 24. Table showing the effect of covariates on substructures. ..............................................60 
Table 25.  Cox regression results showing hazard ratios for substructures in different districts. .61 
Table 26. Table showing the number of different types of culverts in the inventory. ...................61 
Table 27. Table showing the hazard ratios for covariates investigated for culverts. .....................65 
Table 28. Hazard ratios for culverts in different districts with 2.54 ton / lane mile of salt. ..........66 
Table 29. Summary of hazard ratios for age in TICR for bridge components and culverts. .........70 
Table 30. Summary of hazard ratios for different components and culverts for the covariate of 

span or structure length increase. .......................................................................................70 
Table 31. Summary of TICRs, median estimated service life, and good repair life for CIP bridge 

decks. .................................................................................................................................72 
Table 32. Summary of TICRs, median estimated service life, and good repair life for different 

types of superstructures......................................................................................................72 
Table 33. Summary of TICRs, median estimated service life, and good repair life for different 



vi 

substructures and culverts. .................................................................................................72 
Table 34. Summary of hazard ratios for the covariate of salt application for different structure 

types. ..................................................................................................................................74 
Table 35.  Deterioration rates for different superstructure types. ..................................................76 
Table 36.  Deterioration rates for CIP decks on different superstructure types. ............................76 
Table 37. Deterioration rates for substructures and culverts. ........................................................76 
Table 38.  Example data for using a Markov model to predict future bridge deck conditions......80 



vii 

ACKNOWLEDGMENTS 

We would like to thank the Missouri Department of Transportation (MoDOT) for sponsoring this research. 

We would like to acknowledge the assistance provided by David Koenig and other MoDOT personnel with 

several aspects of the research, such as data analysis objectives and needs, providing guidance and methods 

to resolve bridge number changes, providing data on salt usage is different districts across the state, and 

providing review and comment throughout the research.   

 

COPYRIGHT PERMISSIONS 

The authors herein are responsible for the authenticity of their materials and for obtaining 

written permissions from publishers or individuals who own the copyright to any 

previously published or copyrighted material used herein. 

 

DISCLAIMER 

The opinions, findings, and conclusions expressed in this document are those of the 

investigators. They are not necessarily those of the Missouri Department of 

Transportation, U.S. Department of Transportation, or Federal Highway Administration. 

This information does not constitute a standard or specification. 

 



vii 

EXECUTIVE SUMMARY 

This report documents research conducted under research project TR202012, “Evaluation of Missouri’s 

NBI Data to Predict the Deterioration of Bridges.” The objectives of this research were to develop 

deterioration curves for different bridge components and culverts, identify trends in deterioration patterns 

affected by parameters such as the structure type, age, span length, and other relevant parameters, and 

develop recommendations on cost-effective bridge types. To conduct this analysis, records from the Federal 

Highway Administration’s (FHWA) National Bridge Inventory (NBI) were obtained for the years of 1983 

through 2019. These data include the Condition Ratings (CRs) for primary bridge components (deck, 

superstructure, and substructure) and culverts as submitted each year by Missouri, as well as myriad other 

data regarding the location, route, and design of individual structures. The project includes the analysis of 

primary bridge components and culverts. The combined group of bridge components and culverts is referred 

to in the report generically as “structures.”  

Deterioration curves were developed based on Kaplan-Meir (K-M) method of survival analysis. This 

methodology applies the NBI CR data collected over a time interval of 37 years to calculate the probability 

of likelihood of a structure to transition to the next lower CR. These data were then analyzed and median 

service life estimates were provided for the deck, superstructure, and substructure of bridges formed from 

the materials of steel, reinforced concrete (RCC), and prestressed concrete (PSC). Similar curves and 

service life estimates were produced for concrete culverts.  

Cox regression analysis was used to identify and quantify trends in the deterioration of different types of 

bridges MoDOT has built over the years. These data were analyzed to determine the influence of covariates, 

generally parameters that are believed to affect the deterioration patterns for bridges. The methodology for 

Cox regression analysis involved first determining if a given covariate or parameter has a statistically 

significant influence on the model. The report illustrated this procedure for CIP decks and provided raw 

data on the beta factors for the different covariates. For other components and culverts, the raw data is 

available in the appendix. Hazard ratios were used to explore the influence of the statistically significant 

covariates on the deterioration patterns for bridges.  

The results of the research showed the following:  

• The quantity of salt application had greater impact on the deterioration of structures than any other 
parameter studied. 

• CIP decks formed on steel continuous superstructures had longer median service life estimate (54 
years) as compared with steel simple girders (50 years) and PSC continuous superstructures (44 
years). PSC box beams provided the shortest service life for CIP decks (38 years), while RCC slabs 
(59 years) provided the longest service life.  
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• The primary modern superstructure types, including steel simple girder, steel continuous girders, 
and PSC continuous bridge types, had very similar deterioration patterns between CR 8 and CR 4. 
PSC box beam bridges had the shortest median service life, while RCC slab bridges had the longest 
service life. 

• The age of a component or culvert has a statistically significant effect on its reliability, resulting 
in increased likelihood of transition to the next lower CR or between 3 and 10% per 10 years of 
age.  

• Span length has a small but measurable (statistically significant) effect on the deterioration of 
structures. 

• In almost all cases, the deterioration rate of structures as measured by median service life graphs 
had an increase in slope at CR 5, meaning that once a bridge is rated in CR 5, the deterioration 
rate is increased. 

• The research showed that structures formed from RCC, such as slabs, RCC beam bridge, and 
culverts had the longest median service life estimates. PSC box girder bridges had the shortest 
estimated median service life. 

• The data showed that ADT and ADTT did not have a statistically significant effect on the reliability 
of structures. 

The report also included a section on how to implement the results of the research for asset management 

such as forecasting future bridge conditions based on the results of the research.   

Based on the results of the research, four recommendations were made:  

Recommendation 1: Implement preservation strategies to maintain bridges in good condition. 

Recommendation 2: Perform a best-practices survey for PSC box beam bridges. 

Recommendation 3: Consider impact of parameters studied for bridge type and geometry selection during 
preliminary design. 

Recommendation 4: Improve monitoring of salt application.  
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INTRODUCTION 

This report documents research conducted under research project TR202012, “Evaluation of Missouri’s 

NBI Data to Predict the Deterioration of Bridges.” The objectives of this research were to develop 

deterioration curves for different bridge components and culverts, identify trends in deterioration patterns 

affected by parameters such as the structure type and age, span length, and other relevant parameters that 

influence deterioration patterns, and develop recommendations for cost-effective bridge types. To conduct 

this analysis, records from the Federal Highway Administration’s (FHWA) National Bridge Inventory 

(NBI) were obtained for the years of 1983 through 2019. These data include the CRs for primary bridge 

components (deck, superstructure, and substructure) and culverts as submitted each year by Missouri, as 

well as myriad other data regarding the location, route, and design of individual structures. The project 

includes the analysis of primary bridge components and culverts. The combined group of bridge 

components and culverts is referred to in the report generically as “structures.”  

The NBI data were analyzed using two different analytical models to capture both the overall performance 

of structures based on historical inspection records stored in the NBI and to assess the influence of different 

parameters that affect deterioration. These data have been analyzed and this report and its appendices 

provide the results of that analysis. During the course of the research, the research team (RT) met several 

times with MoDOT personnel to update them on progress and receive input on how to best meet the agency 

needs through the research. This report and the analysis contained within it have been improved and focused 

through this collaboration, and specific data presentations have been included to meet some identified 

needs.  

Historically, bridge inspection in the US began shortly after the collapse of the Silver Bridge on December 

15, 1967. Following the collapse, requirements for the inspection and reporting of bridge conditions to the 

FHWA were established in 1971, with the first round of inspection on National Highway System bridges 

due in 1973. Inspections were completed on a component level basis that rated three primary components 

of a bridge (deck, superstructure, and substructure). Additional data on the characteristics and location of 

the structure were also recorded. In conventional component-level bridge inspection, bridge managers use 

inspection results to identify maintenance needs from the safety perspective to help make decisions. A 

subjective CR scale ranging from 0-9 is used to characterize the condition of bridge components relative to 

the as-built condition. Culverts receive a single CR to describe the general condition of the culvert. The 

CRs are recorded on a 0-9 scale where 0 is a structure in “failed condition – out of service” and 9 is a 

structure in “excellent condition.” Structures in “good” condition have CRs of 7 or greater, structures in 

“poor” condition have ratings of 4 or less. Structures with CRs of 5 or 6 are considered in “fair” condition. 

The results of the inspection along with other data describing a structure are submitted annually by bridge 
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owners to the FHWA. These data are stored in the NBI. Although this data collection has been ongoing 

since the early 1970s, the available data from the FHWA begins in 1983.   

Currently, bridge owners like MoDOT are working to effectively implement asset management strategies 

to achieve an overall state of good repair and balance limited funding resources with the continuous aging 

and deterioration of the asset inventory. Recent requirements such as the Moving Ahead for Progress in the 

21st Century Act (MAP-21) and the Fixing America’s Surface Transportation Act (FAST ACT) require 

transportation agencies to develop and implement a data-driven, risk-based transportation asset 

management approach for all National Highway System pavements and bridges, regardless of ownership. 

In response, agencies were obligated to submit documentation to FHWA outlining Transportation Asset 

Management Plans (TAMPs). TAMPs generally provide a summary listing of an agency’s pavement and 

bridge assets including their condition, asset management objectives and measures, performance gap 

analyses, lifecycle cost and risk management processes, and investment strategies to achieve and sustain a 

state of good repair for all assets. Information on the anticipated deterioration rates and future performance 

estimates for assets are key data for asset management plans, to identify future funding needs and drive 

maintenance and repair decisions.  

This research is targeted to provide key data on the past and projected future performance of structures in 

the state of Missouri, based on the NBI data. The focus of the analysis is the CRs for primary bridge 

components and culverts. These data represent the results of routine bridge inspection conducted every 24 

months for most bridges. These data have been analyzed for the purpose of identifying deterioration trends, 

identifying key parameters that affect bridge deterioration, and providing data-driven analysis of the 

performance of different bridge types.  

The following section provides an overview of the objectives of the research deterioration models used in 

the research. The Background section also describes how NBI data was acquired and corrected to fix bridge 

numbering changes that had occurred historically, as noted in the Request for Proposals (RFP) for this 

project. The parameters or covariates studied in the research are also described, including the statistical data 

describing the distribution and statistical characteristics of the parameters.  

The chapter entitled “RESULTS” includes the results of deterioration modeling and analysis. The section 

begins with analysis of cast-in-place (CIP) reinforced concrete (RC) bridge decks, followed by an analysis 

of the effect of different superstructure types on the performance of CIP decks. This section includes a 

description of the process and results from Cox regression analysis. The results of modeling for 

superstructure, substructure, and culverts are also shown. Finally, the chapter entitled “CONCLUSIONS” 

includes a brief summary of the effort and the key findings and conclusions, as well as recommendations 

related to the results of the research.  
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A series of appendices are provided that include more detailed descriptions of the statistical methods used, 

comprehensive listings of the superstructure types included in the NBI, and additional data analysis 

including detailed data from the Cox regression analysis. The appendices also include reliability and service 

life plots for CIP decks in different districts, for use by engineers in the district offices to aid in decision-

making regarding the preservation and maintenance of bridge decks in their district. Reliability and service 

life plots for CIP decks on different superstructures types and plots for different superstructure types are 

also included in the appendices. Verification studies related to the modeling can also be found in the 

appendices.  
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BACKGROUND  

There are approximately 7,200 state-owned bridges and 3,200 state-owned culverts in the state of Missouri. 

These structures are deteriorating over time due to evolving damage, much of which results from corrosion 

of steel, either steel bridge components or the reinforcing steel embedded in concrete components. Over 

the service life of a structure, this deterioration is monitored through routine inspections that assign a CR 

to the primary bridge components and culverts. Over time, the deterioration of the components can be 

tracked through the inspection results represented by the CRs. The rate of deterioration of structures can be 

affected by a number of variable parameters such as the primary material of construction (e.g., steel, 

reinforced concrete (RC), or prestressed concrete (PSC)). Structures may have different configurations of 

span, overall length, and continuity, with some bridges constructed as simple span and others as continuous 

spans over an interior support. Structures are exposed to different traffic volumes, generally expressed as 

the Average Daily Traffic (ADT) and Average Daily Truck Traffic (ADTT). The surrounding 

environmental conditions, freeze/thaw cycles, or the rate of deicing chemical application can have an 

impact on the deterioration patterns for bridges. Each of these parameters were studied in the research to 

assess their influence on the deterioration of structures in Missouri.  

In order to better understand the performance and deterioration of structures in Missouri, this research had 

the following specific objectives:   

1. Develop deterioration curves for the different parts of a bridge broken out by the different types of 

materials used on bridges. The different parts would be the deck, superstructure, and substructure 

and the primary materials would be steel, reinforced concrete, and prestressed concrete.  

2. Develop a deterioration curve for reinforced concrete box culverts.  

3. Identify and quantify trends in the deterioration of different types of bridges MoDOT has built over 

the years. Some of the ways to analyze the data could include but are not limited to:  

• Structure type, 
• Age of the structure,  
• Era of construction,  
• Span length,  
• Condition assessment,  
• Material type,  
• Traffic volume, and  
• Location and environmental exposure.  

4. Provide recommendations of cost-effective bridge types identified in the previous objective. 
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To meet the objectives of the research, deterioration modeling and analysis have been completed using two 

different methodologies. The Kaplan-Meier (K-M) approach has been used to characterize the past 

performance of different structure types. This approach is a survival analysis that assesses the likelihood of 

transitioning from one CR to the next CR based on the past performance as represented in the historical 

inspection records of the NBI. The second method used was Cox regression analysis, which is used to assess 

the impact of different parameters, such as span length, ADT, ADTT, and salt application rates. The Cox 

regression analysis is useful for multi-variate analysis such as required to determine the influence of these 

parameters on the deterioration of bridges. The following section provides a summary of these analysis 

methodologies. A more complete explanation including modeling assumption used can be found in 

Appendix A.  

Description of the Statistical Methods 

The deterioration modeling for the project was conducted using two separate methodologies as noted above. 

The K-M method of survival analysis was used to determine the overall characteristics of deterioration in 

terms of the Time in Condition Rating (TICR) for culverts and bridge components of deck, superstructure, 

and substructure. This analysis was used to characterize the reliability of structures in terms of how rapidly 

components’ CR decreased over time based on historical inspection records that were obtained for the 

project. The K-M approach to modeling the deterioration patterns for bridges has the advantage of being 

based specifically on historical data in the form of the inspection results (CRs) that represents the past 

performance of structures. In this way, the results are closely tied to actual quantitative data in the form of 

CRs assigned by inspectors. However, the K-M modeling approach is not well-suited for analysis of specific 

factors or parameters that might affect the deterioration of structures, e.g., the span length, or environmental 

parameters such as the number of snowy days or application salt, etc. For observing trends in deterioration 

resulting from these other parameters, Cox regression analysis was used.  

Cox regression or Cox proportional hazard analysis was used to assess the effect of independent variables 

such as span length, application of deicing chemicals (i.e., salt), etc. on bridge component and culvert 

deterioration. This methodology is optimum for assessing multiple independent variables (i.e., parameters 

or covariates) that might influence the deterioration of structures, how these variables interact, and which 

variables have a significant influence on bridge deterioration.  

It should be mentioned that other deterioration modeling approaches exist that were not used in this 

research. For example, the Markov modeling approach is a prospective deterioration modeling approach 

that assesses future performance based on transition probabilities. This model has been in use for many 

years in various asset management and bridge management software. However, the power-law aspects of 

the Markov model do not represent the actual deterioration pattern of bridges, because its results represent 
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more rapid deterioration at the initiation of deterioration. Deterioration rates generally increase with 

evolving damage over the service life of a structure, so Markov models generally yield inaccurate results 

when compared with experience. The advantage of Markov models is their mathematical simplicity that 

allows large data sets to be processed and deterioration patterns projected into the future efficiently, if not 

accurately. Another popular deterioration modeling approach is Weibull analysis, which is a suitable 

survival analysis methodology for continuous data. The Weibull approach is best suited for natural systems 

yielding continuous results, such as tension test data or survival times for components that fail at random 

time intervals. Bridge inspection results are not continuous since the results are required to be represented 

in categories on a 0 to 9 scale. As a result, Weibull analysis is theoretically poorly suited to bridge inspection 

results.  

The RT has developed extensive experience with each of these modeling approaches over recent years, and 

more information on these alternatives can be found in various references [1, 2]. However, for the current 

research, the K-M methodology is most appropriate and was selected as the backbone of the analysis. The 

Cox regression approach was also used for multi-variate analysis, as previously mentioned.  

The following sections provide a summary of the two different data analysis approaches used in the 

research. A more detailed review of the methodologies, along with the assumption applied and 

methodologies used to resolve issues within the modeling approaches are shown in Appendix A.  

Kaplan-Meier Survival Analysis 

Before introducing the statistical methods used in this research in detail, providing the definition of the 

terms that are used in subsequent sections of the report would be helpful. The first term is “dependent 

variable,” also called an “outcome variable,” which is defined as “any outcome variable associated with 

some measure” such as the CR of bridge components or culverts recorded at some inspection interval [3]. 

The dependent variable in this research is the time or duration a structure stayed in a CR. For example, a 

bridge superstructure is rated in CR 7 for 15 years, therefore this superstructure has a TICR of 15 in CR 7. 

Say this superstructure then transitioned to CR 6 and stayed in CR 6 for nine years, then the superstructure 

has a TICR of 9 in CR 6 and so on. The duration that a bridge component or culvert is in service is called 

survival time or reliability of that structure. This survival time can be subdivided into survival time for each 

CR, because each CR has distinct definition. A component “survives” in one CR until it either transitions 

to the next lower CR or is improved by repair to transition to a higher CR.  

The second term is “covariate,” also called an explanatory variable, defined as “any variable that is 

measurable and considered to have a statistical relationship with the dependent variable” [3]. Examples of 

the covariates considered in this project and speculated to have a relationship with the dependent variable 
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are snow days, freeze/thaw cycles, ADT, ADTT, and so on. Covariates are divided into continuous and 

categorical families. Continuous covariates are those that can take any numeric values such as ADT or 

number of snow days in a given year. Categorical covariates are those that are qualitative without any 

numeric value such as the location of a bridge in any of seven districts of Missouri, or the subdivision of 

bridge superstructures into prestressed concrete girders and steel girders. Categorical covariates have two 

or more levels or categories.  

The approach of the research was to perform survival analysis, known in engineering as reliability analysis 

or time to failure analysis, employing statistical methods to study the incidence and time of events [4]. One 

of the methods for time to failure analysis is the K-M estimator or the product-limit method. Kaplan-Meier 

(K-M) method is a nonparametric maximum likelihood estimator of time to event data (i.e., component 

transitioning to a different CR) and is a common method for treating discontinuous reliability data [4, 5].  

Reliability data can be calculated using the K-M estimator by equation (1).  

 �̂�𝑆(𝑡𝑡) = � (1 −
𝑑𝑑𝑗𝑗
𝑛𝑛𝑗𝑗𝑗𝑗:𝑡𝑡𝑗𝑗≤𝑡𝑡

) for 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑘𝑘 (1) 

In equation (1), S t( ) is the K-M estimator, d j  is the number of bridge components for which the event 

occurred (transitioned to the lower CR) at time t j , nj  is the number of bridge components at risk of event 

at time t j , and t1  and tk  are the boundary for k distinct event times. The K-M estimator is accompanied by 

statistics such as the mean, median, confidence interval for the median, standard error of the mean, and 

hazard rate that can be used to analyze results.  

The hazard or failure rate is the number of bridge components per unit of time (year) to transition from one 

CR to the lower one (assuming the rate is constant during the year). The hazard rate can be computed 

instantaneously, cumulatively, or averaged within a certain time interval [6]. The instantaneous hazard rate 

is the number of bridge components transitioning to lower CR in a unit of time (year) and this quantity 

varies from one year to the next. This estimate can be computed for t j j≤ ≤t t +1 using equation (2) in which 

τ j = t tj+1 − j  [7].  

𝑑𝑑
 ℎ� 𝑗𝑗(𝑡𝑡) =  (2) 𝑛𝑛𝑗𝑗 ⋅ 𝜏𝜏𝑗𝑗

The cumulative failure rate is the integral of the instantaneous hazard rate within the interval of 0 to t, and 

this quantity could be computed as H ( )t = − ln(S t( )) . Similarly, average failure rate (AFR) could be 
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computed within any two time-intervals. Since instantaneous failure rate is variable and changes in each 

unit of time, the AFR could be used to give a single number to indicate the average number of bridge 

components in a given CR per year to transition to the lower CR during the years the data are available for 

analysis.  

Finally, the K-M estimator can be used to study the effect of time-invariant covariates (explanatory 

variables) on bridge performance such as bridge families with different ADT, span length, location and 

environmental conditions, and so on. Or bridges can be grouped based on construction era (1980 – 2000 

vs. 2000 – 2017) by time-blocking to study the effect of higher standards and improved construction 

material on bridge performance with those of the old standards and lower quality material. Certain other 

parameters described in Objective 3 can also be studied in this way. However, the analysis of these 

covariates using time-blocking with the K-M methodology has the significant disadvantage that the quantity 

of data available for analysis is reduced when time-blocking is used. For example, if one wished to study 

the effect of construction era, then the data would be divided according to the era of construction of the 

structure. Therefore, far fewer structures would be in each group and the analysis would be for a smaller 

sample set and may not be statistically significant. Additionally, the K-M method cannot study the 

interaction among covariates, for example, the interaction between snow days and salt application. For this 

reason, alternative methods for analysis that better fit the situation were explored and the Cox regression 

approach was selected as described below.  

In this research, the K-M method has been used to study certain covariates, such as the material of 

construction for superstructure components (e.g., steel, PSC, etc.) and deterioration patterns among 

districts. However, the K-M estimator is not effective for analyzing the potential interactions between 

multiple covariates, such as the effect of deicing chemical application, snowy days, and ADT in 

combination. For this reason, Cox regression analysis has been used to study these covariates, as will be 

described in further sections of the report.  

Figure 1 shows the K-M deterioration model for steel superstructures in Missouri. It should be noted that 

the K-M model produces a step-wise deterioration curve that is a series of steps that extend horizontally 

from each data point, then drop vertically to the next data point, at one-year intervals. In reading the figure, 

starting on the left at time 0, each data point maintains that value until the data point for the next year, at 

which point it drops vertically to the new value. Presentation of data in that format is difficult to read. To 

make the figures easier to read and more readily interpreted, these data have been smoothed by simply 

running the line through each data point. Given that it is unlikely that a value in-between the 1-year interval 

data points would be required, there is very little lost in smoothing this curve. If a value was required for a 

time interval of less than one year, the reader should round to the higher value. This is practical since it is 
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known the data is only recorded on a yearly basis, so the previous year’s result would be unchanged during 

the subsequent year.  

The data in Figure 1 indicates the TICR in years for bridges with different CRs ranging from 8 to 3. Figure 

1A shows the reliability (probability) of a component transitioning from one CR to another. The red line in 

the figure illustrates the median transition time. For example, for CR 5 (+), 50% of the components will 

transition to CR 4 after about 7 years in CR 5. Figure 1B illustrates the deterioration rate of the component 

which is the compliment of the reliability. As shown in the figure, the rate of deterioration is initially slow 

and increases as damage accumulates. It is also notable that the deterioration rate slows near the end of the 

37-year time interval. Several factors may contribute to the apparent slowing of deterioration as the TICR 

increases. The K-M method is a survival analysis and as a result, those structures that have not transitioned 

from one CR to another after ~15 years may have survived because they have superior durability 

characteristics or are located in an unaggressive environment where ADT is low, and the application of 

deicing chemicals is limited. As a result, these structures are more resistant to transitioning to the next lower 

CR (i.e., deteriorating) than a typical structure of similar design characteristics in a more typical 

environment.  

Additionally, the NBI CR scale does not have uniform damage quantities between different CRs. For 

example, very little damage has typically occurred when a component transitions from CR 8 to CR 7 (very 

good to good), whereas a significant amount of damage occurs to transition from a CR 5 to CR 4 (fair to 

poor). The CRs assigned by inspectors are also subjective, so different inspectors can assign different CR 

for the same condition. Regardless, these CR data stem directly from the inspection results, and therefore 

represent the deterioration patterns according to the NBIS CR definitions and implementation of bridge 

inspection in Missouri. As a result, the deterioration models and results presented are empirical and based 

on actual inspection results collected over the time interval of inspections studied in the research (1983-

2019).  
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Figure 1. K-M deterioration models for steel superstructures in Missouri. 
The K-M deterioration curves are produced within the report for CIP decks, superstructures of various 

materials, substructures, and culverts.  

The K-M method is only capable of analyzing survival data or the dependent variable alone to describe the 

reliability and deterioration patterns for bridge components and culverts. To investigate the effect of 
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covariates on the reliability or deterioration of the bridge components or culverts another statistical method 

called Cox proportional hazard method or Cox regression is used. 

Cox Regression Analysis 

Cox proportional hazard or Cox regression is semi-parametric method used for analyzing the effect of 

explanatory variable on the survival data [8]. This method is called semi-parametric as it has “a fully 

parametric regression structure but leaves their dependence on time unspecified” [9]. The equation for the 

Cox regression model is shown in equation (3). 

 ℎ(𝑡𝑡,𝑋𝑋, ꞵ) =  λ0(t) × exp(ꞵ1𝑋𝑋1 + ꞵ2𝑋𝑋2 + ⋯ ) (3) 

In equation (3), h(t, X, ꞵ) is the dependent variable as a function of time and covariates (X, ꞵ). The 

dependent variable corresponds to the NBI condition rating assigned by inspectors to each one of the bridge 

components (deck, superstructure, and substructure) and culverts. The CR changes as structures deteriorate, 

typically dropping to the next lower CR. Deterioration of the structures and changes in CR are affected by 

factors such as salt used for deicing purposes, ADT, snow days, freeze/thaw cycles, and so on. The 

parameters that are believed to affect the deterioration patterns for bridge components and culverts are 

called covariates. The dependent variable is the product of the hazard function λ0(t) that “characterizes 

how the hazard function changes as a function of time” and the exponentiated linear function of the 

covariates, exp(ꞵ1𝑋𝑋1 + ꞵ2𝑋𝑋2 + ⋯ ) [9]. As shown, the hazard is a function of time, but the covariates are 

time independent – the covariates do not change with respect to time. ꞵ’s are unknown parameters computed 

based on the available data for each covariate, Xn. No assumption is made about the shape of the hazard 

function λ0(t), and that is why Cox regression is called semi-parametric. If all covariates are equal to zero, 

then exp(0) equals a value of 1, leaving only the baseline hazard function, λ0(t). The baseline hazard 

function is analogous to the intercept or the constant term in ordinary regression [9]. 

The parameter estimate for each covariate, ꞵ, is calculated using the method of partial maximum likelihood 

for each covariate. One of the properties of the Cox regression is that it can be stratified across variables 

not considered as a covariate such as the CR 3 - 8. In the case of stratified Cox regression, a single parameter 

is estimated by pooling the information from all strata – one parameter is estimated for CRs 3 – 8 of bridge 

components or culverts. Hence, as will be shown later, sample size in a given CR can negatively affect the 

parameter estimate. In other words, there must be a sufficient number of data points within each CR in 

order to perform meaningful analysis. It is for this reason that care must be taken regarding how data is 

divided and characterized in order to ensure sufficient data points for analysis.  
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The hazard ratio for two subjects (bridges or culverts) with covariate x0 and x1 using equation (3) only 

depends on (X,ꞵ) because the hazard functions cancel out each other as shown in equation (4):   

 𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑥𝑥, ꞵ) =  
exp(ꞵ1𝑋𝑋1)
exp(ꞵ0𝑋𝑋0)

 (4) 

In this way, the hazard ratio can be used to compare the effect of one covariate to another. For example, 

this could be used to compare bridge performance in one district as compared to another, or one 

superstructure type to another.  

Further technical details on the development and testing of the Cox regression analysis are available in the 

Appendix A.  

Model Assumptions 

There are two assumptions for the Cox regression model shown in equation (3). 1) the proportional hazard 

assumption – the hazards are not changing with time and 2) the explanatory variables are modeled with the 

correct functional form – x, x2, log(x), or √𝑥𝑥 . Tests are available to verify the assumptions and to take 

corrective actions in case of any violation. These tests are discussed in Appendix A, along with other details 

of the K-M and Cox methodologies.  Appendix G contains results from validation testing of the Cox 

regression models. These appendices are intended for other researchers and students wishing to repeat the 

analysis or conduct similar analysis, and to document the research activities in this project. Data in these 

appendices is not necessary for understanding the results of the research.  

Data Preparation 

The data stored in the NBI consists of bridge records formatted according to the Recording and Coding 

Guide for the Structure Inventory and Appraisal (SI&A) of the Nation’s Bridges[10]. This document, 

commonly referred to as the Coding Guide, defines a uniform system for data reporting.  

The data stored in the NBI commonly has various inconsistencies and errors due to random input errors, 

changes in business practices of the state submitting data, inconsistent or changing numbering practices, 

and other sources. As a result, analysis of these data must begin with an effort to prepare the data for 

analysis. This preparation includes identifying and correcting random errors and systematic inconsistencies 

to ensure the fidelity of the data and organizing these data for analysis.  

Inspection data (records) for state-owned bridges and culverts in Missouri were acquired from two different 

sources within the FHWA. Records from the years of 1992 - 2019 were obtained from the Long-Term 

Bridge Performance Program (LTBP) web resource called InfoBridge. These data are commonly available 
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for all states and territories of the US. In addition to these data, NBI records were acquired from 1983 – 

1991 from the FHWA Office of Bridges and Structures. Records from these years were not available on the 

InfoBridge at the time of the research due to typically high number of errors and inconsistency in 

submissions from all the states and territories from this time period. It should be noted that at the time of 

this research, the data provided by both the InfoBridge website and the FHWA bridge office contained all 

numbering errors present in the raw NBI datafiles. Corrections in these data that have been made on the 

InfoBridge website as of November 30, 2021. In total, 37 years of inspection data were obtained for 

analysis.  

Data recorded in the NBI for the years of 1983 - 2019 for structures in Missouri were affected by various 

changes in the numbering system used for state bridges. As a result, data preparation included resolving 

numbering inconsistency in the records such that the historical performance of each bridge could be tracked 

over time. This step involved making the structure identification (ID) consistent, completing missing data 

(such as missing characters in the bridge ID number), and defining parameters based on the available data 

in the NBI files and other sources for Missouri state-owned structures. The following subsections provide 

detailed information about the data preparation steps taken to prepare the Missouri data for analysis. 

Structure Number Consistency 

During the time interval for which data was collected for analysis, state-owned structures underwent several 

changes in the identification (ID) sequence captured by Item 8, Structure Number, of the coding guide. 

These changes caused the inspection data for a given structure to be attributed to two or three different 

structure IDs that were assigned for the same structure, resulting in discontinuous records. In order to make 

the inspection data continuous, the correlation between the IDs was established and a single ID was used 

for all the inspection data available for each individual structure.   

State-owned structures in Missouri were corrected for three changes that had occurred to the structures’ ID 

over the aforementioned timeframe. These changes included changes to the federal ID number, revision 

numbers that had been added to the ID following certain inspection cycles, and using an alphanumeric ID 

for some structures at certain times in the past. To make the inspection data continuous, each of these 

changes were corrected: old federal IDs were correlated to the current federal IDs, the revision numbers 

were removed, and alphanumeric IDs were correlated to the federal IDs. These three corrections made the 

inspection data continuous and consistent.  

To illustrate the number of corrections required to prepare the data for analysis, Figure 2 depicts the result 

of the corrections made to the structure IDs. This figure shows the number of years of inspection records 

available for structures before and after ID correction. As shown in the figure, the ‘as received’ data – solid 



   

14 

black bar – had at most 20 years of inspection data for any given bridge. Because the structure ID numbers 

had changed during the 37-year time interval, many bridges were counted two or more times. The most 

dramatic change occurred when the data was corrected for ID changes that had occurred. Corrections 

implemented to remove revision numbers in the ID field and removing alphanumeric entries also affected 

the data, though to a smaller extent as illustrated in the figure.  

 

Figure 2. Bar graph showing the results of correcting NBI data for bridges and culverts in 
Missouri. 

As the corrections and correlations were made, the number of structures for the ‘as received’ data declined, 

and data become more consistent – increasing the number of years of inspection data for a given structure 

with ID modifications. Table 1 contains the number of different IDs used for the state-owned structures. In 

reality, until the data was corrected for the changes, the data did not show the correct number of state-owned 

structures because several different IDs were assigned to the same structure in a number of cases.  

As shown in Table 1, by correlating the old federal ID to the current federal ID, the number of structures 

declined from 25,732 to 15,871 – a reduction of almost 10,000 structures. When the revision numbers were 

removed, numbers declined by 400 from 15,871 to 15,491. Finally, removing the alphanumeric IDs and 
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correlating with the federal ID, the number of structures was further reduced to 13,047. This value is 

believed to be an accurate account of the number of state-owned bridges and culverts over the 37-year time 

period. It should be noted that there are currently about 10,400 state structures in Missouri that are on the 

NBI. The difference between the current number of structures and the number of research datasets results 

from structures that have been replaced. When a structure is replaced, a new unique structure record is 

created in the NBI so that all structures can be accounted for over time. 

Table 1. Number of bridges/culverts. 

Inspection data Number of 
bridges/culverts Comment 

As received data  25,732 The ‘as received’ data includes many structures that 
are listed more than once due to the variations in the 
numbering scheme as described in this section.   

Data corrected for old federal ID 
to federal ID 

15,871 

Data corrected for old federal 
ID, and revision numbers 

15,491 

Data corrected for old federal 
ID, revision number, and 
alphanumeric ID 

13,047 The number 13,047 is the current and most accurate 
number of state-owned bridges and culverts after 
correction.  

To understand the extent of data available for analysis following the preparation of data and including all 

37 years of records examined, Figure 3 shows the number of years of inspection records available for this 

bridge population. As shown, over 50% of the structures (6,586 out of 13,047) have 36 or 37 years of 

inspection data. Only 793 structures in the data set have one to five years of inspection data.  

 

Figure 3. Bar graph showing the years of inspection data for bridges in Missouri. 
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Figure 3 shows the number of years of available inspection records for the 13,047 state-owned structures 

broken down by year and shows that many structures have 36 or 37 years of available inspection records. 

The structures include bridges and culverts formed with many different design and material characteristics.  

These data were further reduced to form families or groups of bridges and culverts with similar design and 

materials characteristics to support the analysis.   

Data for Analysis 

This section describes the data utilized for deterioration modeling of the state-owned structures. To meet 

the objectives of the research, the trends or deterioration patterns for structures in Missouri were analyzed 

based on the CRs assigned to structures during periodic inspections. These data were considered dependent 

variables. The parameters that might affect the deterioration of structures were considered as independent 

variables which have the potential to influence the dependent variables, (i.e., the CRs). The independent 

variables (i.e., parameters) used for analysis included the type of material used for construction, the type of 

structure, the age of the structure, and its era of construction. Maximum span length and overall length were 

also considered as independent variables. The environment surrounding a given structures was described 

through several different variables such as the annual number of snow events (i.e., snow days), freeze/thaw 

cycles, and application of deicing chemicals (salt). The district or region of the state where the structure 

was located was also considered, as well as the traffic loading on a structure as described through the ADT 

and ADTT.  

These data were obtained from several different sources, including data stored in the NBI, data obtained 

from MoDOT, and data obtained from the LTBP program InfoBridge website. This section of the report 

describes the data collected for the analysis, the source of the data, and key statistical parameters listed to 

provide an illustration of the distribution of values for the different variables/parameters. Table 2 provides 

a listing of the NBI data items utilized in the research, including the name of the item and the item number 

from the coding guide. The dependent variables are the CR recorded for the three bridge components (deck, 

superstructure, and substructure) and culverts (SI&A items 58, 59, 60, and 62) marked as “D” in Table 2.  

Most of the other items listed are independent variables and are marked as “I” in Table 2. For the purpose 

of the deterioration analysis, it is assumed that the dependent variables are affected by the independent 

variables. For example, the ADT or ADTT may be expected to have an effect on the condition of the bridge 

deck. Certain items from the NBI are simply identifiers that don’t affect the condition of the structure, such 

as the structure number and the owner, and these items are marked as “N” in Table 2.  

In order to summarize the range and typical values for the independent variables used in the research, the 

distributions and extreme (high and low) values are shown in different tables in this section. This includes 
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the quartiles of these data that show, for example, the 100% that shows maximum value (100% of the values 

are equal to or less than this value), the 75%, 50%, and 25% quartile, and the 99% percentile. The five 

highest and lowest values for each independent variable are also shown. These data provide an overview of 

the magnitude and distribution of the data for each variable/parameter.  

Table 2. Bridges and culverts information used for data analysis. 

SI&A item ID SI&A item ID 
Structure_number_008 N Deck_cond_058 D 
Owner_022 N Superstructure_cond_059 D 
Year_built_027 I Substructure_cond_060 D 

ADT_029 I Channel and channel 
protection_061 

I 

Structure_kind_043A I Culvert_cond_062 D 
Structure_type_043B I Year_reconstructed_106 I 
Structure_len_mt_049 I Deck_structure_type_107 I 
Max_span_len_mt_048 I Percent_ADT_truck_109 I 

 
Age and Era of Construction  

The independent variables from the SI&A data included the age of the structure, which was derived from 

the Year Built (027) and Year Reconstructed (106). Since some structures are renovated during their service 

life, the Year Built and Year Reconstructed variables were combined to calculate the age of a structure at 

any given point in time. For those structures with a reconstruction date, the CR before and after the 

reconstruction date was examined to determine if the CR increased for any of the components of the 

structure. The age of the structure is calculated as the inspection year minus the year built if there was no 

improvement due to reconstruction. If there was improvement or increase in CR at the time of 

reconstruction, then the age for the improved component was calculated as the inspection year minus the 

reconstructed year. Mathematically, the age is calculated using the following equation.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑡𝑡 = (𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑛𝑛 𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦) − (𝑦𝑦𝐴𝐴𝐼𝐼𝐼𝐼𝑛𝑛𝐼𝐼𝑡𝑡𝑦𝑦𝑟𝑟𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑛𝑛 𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦) 𝒊𝒊𝒊𝒊 (𝑦𝑦𝐴𝐴𝐼𝐼𝐼𝐼𝑛𝑛𝐼𝐼𝑡𝑡𝑟𝑟𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑛𝑛 𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐼𝐼𝑡𝑡𝐼𝐼𝑒𝑒𝐴𝐴) 

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑛𝑛 𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦 − 𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦 𝑏𝑏𝑟𝑟𝐼𝐼𝑏𝑏𝑡𝑡) 

In this research, the age and era of construction were analyzed primarily through the age a structure was 

when it transitioned into a given CR, as previously described. The era of construction was not a specific 

covariate analyzed in the research because separating data into different eras of construction resulted in 

insufficient data for analysis, and such a covariate correlates with age. As a result, the age of the structure 

was studied, and the resulting trends are reported herein.   
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Materials and Type of Construction  

Structure Kind and Structure Type  
Structure kind (043A) and structure type (043B) variables describe the materials of construction (e.g., steel, 

reinforced concrete, prestressed concrete, etc.) and construction type (e.g., simply supported, continuous, 

truss, girder, etc.). The combination of these two items was used to identify families of bridges with similar 

material and construction type for analysis. There were 56 different combinations of structure type and kind 

found in the inventory, and a detailed listing of these combinations can be found in Appendix B, Table B-

1. The listing in Appendix B also includes the number of structures for each of the materials/construction 

type combinations.  

The most common structure overall was found to be a continuous concrete culvert with 3,310 structures. 

The most common bridge types were bridges with steel superstructures, either continuous (2,645) or simple 

span (1,602), followed by prestressed concrete continuous structures (1,262).  

The three most common materials for bridge superstructure construction were steel, reinforced concrete 

(RC), and prestressed concrete (PSC). Considering all structure types for each of these materials, there were 

4,836 steel, 5,558 RC structures (including 3,310 culverts), and 2,601 PSC structures. 

In order to have sufficient data on which to base statistical analysis, the different superstructure types and 

materials were grouped into families of related bridge design parameters. As previously mentioned, there 

are 56 different combinations of superstructure materials and designs, including 51 different bridge 

combinations and five culvert combinations. In order to have sufficient data for meaningful statistical 

analysis, these 51 bridge combinations were grouped into six superstructures types. The superstructure 

types were selected based on the following two rationale: 

1. From an engineering perspective, the superstructure types should be those which are currently 
designed and constructed. 

2. From a statistical point of view, each superstructure type should include a sufficient number of 
bridges to produce accurate results from the models.  

From a statistical point of view, it is shown that for a categorical covariate with only two levels to estimate 

the hazard ratio at α = 0.05 (i.e., 95% confidence) and a multiplicative margin of error of 1.2 “requires a 

total number of 462 events.” [13] There are 51 different combinations of superstructures with CIP decks 

and the NBI records do not provide a sufficient number of bridges in each of the 51 different combinations. 

Moreover, a sample size of 184 is required for estimating the reliability or deterioration probabilities with 

a 95% confidence interval for the simplest case of no covariates, which corresponds to the K-M estimates 

according to the Dvoretzky-Kiefer-Wolfowitz inequality [13]. This value of 184 is for a case where there 

is no censoring and all structures transition to a lower CR at the end of their available data. The “no 
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censoring” criteria are addressed in this research by trimming the data at the beginning or the end of the 

available dataset to eliminate components where the available data may not be representative. Details of 

the trimming process used in this research are discussed in the section entitled Condition Rating for Decks, 

Superstructures, Substructures, and Culverts.  

Therefore, not all superstructure types were included in the analysis. The superstructure types with 

sufficient counts (i.e., number of bridges) are shown in Table 3. The table shows the SI&A values and the 

description for superstructure and materials included in the study. The NBI listings were combined into 

“analysis datasets” to ensure sufficient data was present in each analysis set for meaningful analysis, as 

shown in Table 9. As shown, some superstructure types are combined together to make a single analysis 

data set with consideration of the construction material or superstructure type. Some superstructures that 

are less common or not frequently constructed were also omitted from the analysis, such as truss bridges. 

Although major bridges are often trusses, the number of those bridges is relatively small as compared with 

“bread and butter”- type bridges. There were 423 bridges listed as “steel truss,” but these were not included 

in the analysis because their characteristics vary widely (e.g., short pony trusses or small-span rural bridges 

vs. major river crossings), not all have CIP decks, and when considering the range of CRs, there was 

insufficient data for meaningful analysis. For these reasons, trusses were not considered in the analysis. 

There were also some bridge superstructure combinations that were very rare. For example, there are 10 

combinations for which only a single bridge is listed in the NBI data (see Appendix B, Table B-1). These 

were not included in the analysis.   

Structure Length and Maximum Span Length 
The maximum span length (048) and structure length (049) were used to analyze and study their effects on 

bridge deterioration. Structure length is the overall length of the structure, e.g., from one abutment backwall 

to the other, while the maximum span length defines the longest of all of the spans in a given bridge. For a 

single span bridge, these values should match.  

In order to summarize these parameters in terms of the overall inventory of bridges in Missouri, statistical 

measures of the quantile distribution and the high and low values are presented in Table 4. The quantile 

data includes the 100% quantile that describes those in the top 1% in terms of length. The 50% value 

describes the median length for which ½ the structures are longer and ½ the structures are shorter. Data on 

the five longest and five shortest bridges is also presented. These data characterize the population 

distribution and are repeated for different items from the NBI data used in the analysis in the following 

sections.  
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Table 3. Combinations of superstructures types and materials used to from six bridge families for 
analysis.  

SI&A items 
SI&A description Count Analysis data set Combined 

count 43A 43B 
4 2 Steel continuous stringer/multi beam girder 2,645 Steel cont. girders 2,645 
3 2 Steel stringer/multi beam girder 1,602 Steel simple girders 1,602 

5 2 Prestressed concrete stringer/multiple-beam or 
girder  174 

PSC cont. girders 1,436 
6 2 Prestressed concrete continuous stringer/multi 

beam girder 1,262 

1 1 Concrete slab 247 
RCC slabs 1,014 

2 1 Concrete continuous slab 767 
1 4 Concrete tee beam 790 

RCC girders 1,022 

2 4 Concrete continuous tee beam 20 
1 6 Concrete box beam or girders - single or spread 5 
1 5 Concrete box beam or girders - multiple 2 

2 6 Concrete continuous box beam or girders - single 
or spread 193 

2 5 Concrete continuous box beam or girder - 
multiple 12 

5 4 Prestressed concrete tee beam 169 

PSC box beams 1,140 

6 4 Prestressed concrete continuous tee beam 344 

5 5 Prestressed concrete box beam or girder - 
multiple 384 

5 6 Prestressed concrete box beam or girder – single 201 

6 5 Prestressed concrete continuous box beam or 
girder – multiple 16 

6 6 Prestressed concrete continuous box beam or 
girder – single 26 

Total number 8,859 

The analysis result for the structure length and maximum span length are also shown in Table 4. The top 

portion of Table 4 lists the quantiles and percentiles. For example, the lower 25% of the bridges (first 

quartile) are less than or equal to 43 ft. in length, and the 25% span length is 15 ft. The median or 50% 

(second quartile) of the bridges are less than or equal to 128 ft. in length, and the median span length is 49 

ft. In other words, 25% of the bridges are greater than 43 ft., but less than and equal to 128 ft. in length, and 

25% of the maximum span lengths are greater than 15 ft. and less than 49 ft. in length. The bottom portion 

of Table 4 lists the smallest and largest five values for each variable.  
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Table 4. Statistical measures for structure length and maximum span length. 

Level (%) Quantile (structure length (ft.)) Quantile (max. 
span length (ft.)) 

100 7,847 1,500 
99 1,649 200 
75 222 78 

50 (median) 128 49 
25 43 15 

Five lowest and five highest statistical measures 
Structure length (ft.) Max. span length (ft.) 

Five lowest values Five highest 
values 

Five lowest 
values 

Five highest 
values 

15 7,847 3.9 1,500 
14 7,847 3.6 1,150 
14 7,102 3.0 963 
13 6,826 2.6 920 
13 6,659 2.0 910 

Deck Structure Type (107) 
The most common type of deck on a bridge in Missouri is a concrete cast-in-place (CIP) deck. Table 5 lists 

the available deck types for the state-owned bridges. The letter “N” from the SI&A code indicates that these 

structures are culverts [10]. Deck structure type can be used to analyze each deck type individually. For 

example, concrete cast-in-place decks are analyzed as a single family to determine their reliability and 

deterioration characteristics. However, the number of bridge decks other than CIP decks was too limited 

for meaningful statistical analysis, and as a result only the 9,341 CIP decks were considered.   

Table 5. List of different deck types for state-owned bridges. 

SI&A item 
107 SI&A in words No. of 

decks 
1 Concrete cast-in-place 9,341 
2 Concrete precast panels 407 
3 Open grating 14 
4 Closed grating 14 
5 Steel plate (includes orthotropic) 3 
8 Wood or timber 50 
9 Other 21 
N Not Applicable 3,197 

Traffic Volume 

Average Daily Traffic (ADT) and Average Daily Truck Traffic (ADTT) 
The level of service of a bridge in terms of the traffic carried on the bridge is described by the ADT, and 

the portion of that traffic that are trucks is described by the ADTT. These two covariates were expected to 

correlate in some way with deterioration of bridge components. The ADTT is recorded as a percentage of 

the ADT, therefore, ADTT is calculated by multiplying the percentage recorded under ADTT to the number 

of vehicles recorded under ADT. Table 6 contains the statistical measures for ADT. As shown, 50% of the 

bridges have less than 1,500 vehicles per day and 25% of the bridges (75% - 50%) have over 1,473 to 6,100 
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vehicles per day. Five bridges with lowest number of ADT and five bridges with the highest number of 

ADT are also listed in the lower part of Table 6.  

ADTT statistical measures are also shown in Table 6. As shown, 50% of the bridges have less than or equal 

to 158 ADTT and 75% of the bridges have less than or equal to 779 ADTT. Only 1% of the bridges have 

over 9,547 to 51,738 ADTT. Five bridges with the lowest ADTT and five bridges with the highest ADTT 

are listed in the bottom part of Table 6. 

Table 6. Table showing statistical measures for ADT and ADTT.  

Level (%) Quantile (ADT) Quantile (ADTT) 
100 287,435 51,738 
99 70,348 9,547 
75 6,100 779 

50 (median) 1,473 158 
25 408 43 

Five bridges with lowest and five bridges with highest ADT and ADTT 
ADT ADTT 

Five lowest 
values Five highest values Five lowest 

values 
Five highest 

values 
6 287,435 5 51,738 
5 286,696 4 51,065 
4 236,045 3 39,971 
2 231,513 2 39,971 
1 224,573 1 38,297 

 
Condition Rating for Decks, Superstructures, Substructures, and Culverts 

The CR for decks, superstructures, substructures, and culverts are the main dependent variables used to 

determine the reliability of structures in the MoDOT inventory. The TICR was calculated from the CR 

history of a structure contained within the NBI data. The TICR is calculated by counting the number of 

years a bridge component or culvert stayed in each of the CR for CR 8 through CR 3. TICR is the only 

variable used for K-M analysis to determine the reliability and deterioration of the bridge components or 

culverts. In this way, the K-M analysis is formed directly from the available inspection data, and therefore 

represents an empirical description of the accurate historical performance of structures.  

Similarly, TICR is the dependent variable for Cox regression analysis to study the effect of the independent 

variables (i.e., salt usage, snow days, ADT, etc.) to check if the TICR is affected by these independent 

variables. If the TICR was affected by the independent variable, Cox regression was used to analyze how 

large of an effect each independent variable had on the reliability and deterioration of the bridge components 

or culverts. Later in this report greater discussion regarding the differences between the K-M and Cox 

regression models will be presented. 

In order to utilize the NBI data for the deterioration analysis used in this research, some treatment of the 

raw NBI data files (beyond error corrections noted above) was needed. The NBI CRs history for structures 
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based on data from the years 1983 – 2019 were included in this study. The data are for a fixed time interval 

and these data may be incomplete relative to the entire service life of a bridge. Bridges built before 1983 or 

bridges remaining in service after 2019 do not have complete information on the TICR for each bridge 

component. For example, a bridge deck may be in CR 6 in 1983, when the record starts, and then transition 

to CR 5 after just one or two inspection cycles, indicating the TICR value for that bridge deck may be just 

2 or 4 years. However, it is not known how long that deck may have been in CR 6 prior to 1983, so assuming 

the TICR was only two or four years would not represent the actual TICR. The same is true for CRs for 

2019, the end of the data available for analysis – a bridge may be rated CR 6 in 2019, and it would not be 

possible to know how long that deck may remain in CR 6 in the future. Therefore, some “trimming” of the 

data was needed to minimize the effects of the censored data at either end of the time interval considered.  

A methodology for “trimming” the NBI datafiles to minimize the impact of the censored data was 

previously developed and published by the RT, and is now widely used for the analysis of NBI data to 

determine TICR values [11]. In summary, any bridge component with less than five years of similar CRs 

in the beginning or the end of the available data for a bridge component had that CR deleted from the data 

set for that component. In this way, the impact of the fixed time interval on the TICR values calculated for 

the bridge component is reduced. Any interval of greater than five years at the beginning or end of the time 

interval is assumed to be representative of the actual deterioration behavior of that component and therefore 

left unchanged.   

Besides the variables extracted from the NBI data files, the RT acquired other data such as the annual 

number of freeze/thaw cycles, number of snow days, and the amount of salt used by the counties to use in 

the analysis. These variables are described in the subheadings below. 

Location and Environmental Exposure 

Annual Freeze/Thaw Cycles and Snow Days 
The aggressiveness of the environment surrounding a structure can have an impact on deterioration patterns. 

The application of deicing chemicals is well-known as a driving force for corrosion damage in structures. 

Damage as a result of freeze/thaw cycles can also increase the rate of deterioration because the expansion 

of water when its phase changes to ice can induce additional stress in the concrete and cause cracking and 

deterioration of the material. In order to characterize the aggressiveness of the environment and correlate 

the environment with deterioration, data on the number of freeze/thaw cycles, number of snow days, and 

level of salt application to the roadway were gathered.   

The data for freeze/thaw cycles for bridges were downloaded from the FHWA LTBP InfoBridge website 

and used to study the effect of freeze/thaw cycles on bridge deterioration. Table 7 contains the statistical 
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measures for the number of freeze/thaw cycles. As shown in the lower part of Table 7, the minimum number 

of freeze/thaw cycles is 45 days per year and the maximum number of freeze/thaw cycles is 125 days per 

year. Similarly, 50% of the bridges have at least 85 cycles per year, and 99% of the bridges have less than 

or equal to 113 cycles of freeze/thaw per year.  

The number of snow days per year was also downloaded from the InfoBridge website and used in the 

analysis to determine how the number of snow days affects bridge deterioration. Table 7 contains the 

statistical measures for the number of snow days per year for the state-owned bridges. As shown, the 

smallest number of snow days recorded for the state-owned bridges is five days per year and the maximum 

number of snow days recorded is 100 days per year. Similarly, 50% of the bridges have at least 39 snow 

days per year and 75% of the bridges have at least 48 snow days per year.  

Table 7. Table showing statistical measures for freeze/thaw cycles and snow days. 

Level (%) Quantile (freeze/thaw cycles 
(days/year)) 

Quantile (snow days 
(days/year)) 

100 125 100 
99 113 76 
75 95 48 

50 (median) 85 39 
25 74 30 

Five bridges with the lowest and the highest number of freeze/thaw cycles 
Freeze/thaw cycles (days/year) (Snow days (days/year)) 
Five lowest 

values 
Five highest 

values Five lowest values Five highest 
values 

45 125 5 100 
45 125 5 100 
45 125 5 100 
45 125 5 100 
45 125 5 100 

Salt Use by Counties 
The application of deicing chemicals (i.e., salt) to bridge decks is well known as a driving force for 

corrosion on steel members and reinforcing embedded in concrete components. However, specific data on 

the rate or quantity of salt applied to a particular bridge is generally unavailable. Data was provided by 

MoDOT that recorded the quantity of salt used based on data from salt storage facilities across the state. 

The data provided indicated the salt usage from different storage facilities on an annual basis. Based on the 

provided datasheet, salt was stored in several different storage locations in each county. A total quantity of 

salt was calculated for each county by summing the amount of salt in each storage location in the county. 

The data provided by MoDOT recorded the salt usage over the time interval from 2001 - 2010. However, 

the raw data included only total quantities of salt used on an annual basis during that time frame. Factors 

that might affect the distribution of the salt used, such as how large of an area was serviced by a certain salt 

storage facility, were not included in the data provided.  
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These data were reduced by summing the amount of salt used in a particular county, and dividing that value 

by the miles of state-owned routes in the county. This provided a value of salt used per mile in each county 

over the time interval of 2001 - 2010, which normalized the data somewhat based on the number of miles 

of roadway on which the salt is deposited. The county data was summed in order to have district-level salt 

use statistics. These data were then applied over the entire 37 years of records available on bridge condition. 

In this way, an estimate of the relative level of salt usage in different areas of the state was calculated and 

used as a covariate for the analysis.  

The statistical measures for salt used by counties from 2001-2010 is shown in Table 8. As shown, 50% of 

the counties used 1,197 tons of salt per year or less from 2001 – 2010. The five lowest and five highest 

quantities of salt used by the counties are listed in the bottom part of Table 8.  

Table 8. Table showing statistical measures for salt used by counties from 2001-2010.  

Level (%) Quantile (salt used (tons/year)) Quantile (salt per mile 
(tons/year)) 

100 32,949 10.11 
99 10,805 5.66 
75 2,137 4.08 

50 (median) 1,197 2.70 
25 656 2.11 

Five counties with the lowest and the highest salt usage  
Salt used (tons/year) Salt per mile (tons/lane miles) 

Five lowest values Five highest 
values 

Five lowest values  Five highest 
values 

38 32,949 0.54 10.12 
28 17,796 0.54 10.12 
27 17,637 0.72 10.12 
25 16,364 0.72 10.12 
24 15,944 0.72 10.12 

There are three issues that should be noted regarding the salt data used in the study.  

1. The ‘as received’ data for salt used by counties contained negative quantities for some of the 
counties for the time period 2001-2010. The negative quantities were replaced with the average of 
the available positive quantities for the county, based on the assumption that the negative value 
was a data error.  

2. Compared to the 37 years of bridge inspection data (1983 – 2019), salt data is limited to a very 
short period of time. To remedy the unavailability of salt data for the remaining number of years, 
the data for 2001 – 2010 was populated for the rest of the inspection period as well. This assumes 
that the reported salt data was representative of salt usage in that area of the state during the time 
interval under consideration (1982-2019).  

3. Salt data was converted to salt per lane miles by dividing the salt used in each district by the total 
lane miles of roadways in that district. The assumption here was that all the roadways in a district 
are treated with an equal amount of salt, which may not be the case. Roadways with different 
number of lanes were all treated equally. Similarly, if there were any prioritization among 
roadways in terms of salt treatment, it was not taken in to account. For example, a certain district 
may treat interstates more aggressively than lettered state routes, but information on this type of 
prioritization was not available. Overall, the RT sought conservative assumptions in the absence 
of more detailed data about salt usage by counties and districts.  
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The quantity of salt distributed in each district and the number of snow days in the district was compared 

to assess the correlation between the number of snow days and the application of salt. The data on the 

quantities of salt applied was provided for the years 2001 – 2010, and the number of snow days in those 

years was determined from the LTBP InfoBridge website. Figure 4 shows the relationship between the 

estimated quantity of salt usage and the number of days of snow reported in the county where the storage 

facility was located. Data is reported according to the district in which the county was located, with each 

district indicated by a different marker and color. These data illustrate a trend of increased snow days 

generally correlating with increased salt usage, although the data have a lot of scatter. The data also show 

some outliers, such as the three points from the St. Louis District that suggest more than 10 tons of salt per 

lane mile. Overall, the data shows some correlation between the number of snow days and the salt 

application, but with considerable scatter as shown in the figure.   

 

 

Figure 4. Scatter plot showing snow against salt for 2001-2010. 

Districts 
Another qualitative (or categorical) covariate included in the analysis were the seven MoDOT districts. The 

MoDOT districts are the Northwest (NW), Northeast (NE), Kansas City (KC), Central (CD), St. Louis (SL), 



   

27 

Southwest (SW), and Southeast (SE). A map showing the districts is shown in Figure 5. The analysis 

reported herein examines the trends in deterioration among the different MoDOT districts. 

 

Figure 5. Figure showing MoDOT's seven districts. 

The district covariates were analyzed to check if the deterioration of a bridge component or culverts are 

different from one district to another. Data analysis using the covariates discussed in this section is 

presented in the following pages. 
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RESULTS 

This section provides the results from data analysis used to calculate deterioration curves for MoDOT 

structures and to evaluate the effect of the explanatory variables on the deterioration of the structures. For 

clarity purposes, this section is divided into subsections by bridge component. First, the reliability analysis 

for CIP bridge decks is provided. This includes analysis of the relationship between CIP deck deterioration 

on different types of superstructures. The reliability analysis of different types of superstructures is also 

presented. Substructure and culvert analysis are also included in this section.  

Reliability Analysis for CIP Decks 

As mentioned before, 9,341 out of 13,047 (71.6%) state-owned structures have cast-in-place (CIP) bridge 

decks recorded in the NBI data. The section reports the analysis results for the CIP decks. The K-M curves 

showing the deterioration trends and the TICR based on the NBI condition ratings are presented first, 

followed by the development of the Cox regression analysis to assess the effect of the covariates on the 

deterioration of the CIP decks. 

The K-M curve for all CIP decks regardless of their location or their superstructure type is shown in Figure 

6. The vertical axis is the reliability or survival percentage, and the horizontal axis is the CIP deck TICR. 

For example, the probability that the CIP decks in CR 6 stay in this CR for more than 14 years is 50% and 

the probability to stay in this CR for more than 20 years is only ~30%. The graph for other CRs could be 

read in a similar manner. As shown in the figure, the TICRs for CR 6 and CR 7 are greater than the TICRs 

for other CRs, while TICR for CR 8 is actually similar to the TICR for CR 3 and CR 4. It is common for 

this and other analysis results that the TICR for CR 8 is relatively short because not much damage has to 

accumulate for an inspector to assign a CR of 7.  

Similar reliability graphs were produced for CIP decks located in each of the seven districts and CIP decks 

on different superstructure types. These graphs are presented later and could be read and interpreted similar 

to Figure 6, but are specific to district or a superstructure type.  

The reliability graph shown in Figure 6 can be used to construct service life estimates for CIP decks based 

on the percentage of the CIP decks still surviving at the median value from the reliability plot. The median 

value is illustrated on the plot with a horizontal line at 50% reliability.   

These data can also be used to plot the hazard function or cumulative hazard graph, a statistical measure of 

the cumulative likelihood of a component transitioning to the next lower CR. Both the median service life 

and the cumulative hazard function graphs are produced and discussed in the following section.  
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Figure 6. K-M curve showing the reliability of CIP decks for CR 3-8. 

Service Life and Hazard for CIP Decks 

Service life plots for CIP decks and other components were produced based on the median TICR values 

from K-M analysis. The median value represents the value which 50% of the decks would transition from 

a given CR to the next lower CR. The median value is used rather than a mean transition value because the 

mean (average) tends to be higher than the median due to the fact that some bridge components remain a 

very long time in a given CR. As a result, the average TICR is commonly larger than the median TICR. 

The median value provides a more conservative value and better represents the likelihood of transitioning 

for any given structure.  

Using Figure 6, the time span that the median (50%) of CIP decks stay in CR 8-3 is determined by selecting 

the time (years) for 50% of the decks to transition in each of CRs shown on the plot. These data are plotted 

in Figure 7A and Figure 7B. Figure 7A shows the median service life along with the 25th and 75th percentiles 

that represent the distribution of the results. The 25th and 75th percent value are shown to illustrate the 

distribution of expected service life for the decks for each CR. These data can be interpreted to show the 

central tendency for service life and the range over which 50% of the bridges will transition. About 1 in 4 

decks are expected to have a service life longer than 75th percentile, and 1 in 4 bridges are expected to have 

a service life shorter than the 25th percentile, based on the K-M analysis of historical records.  
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Figure 7B shows the median service life with the confidence intervals represented from the original 

analysis. The error bars shown for each point estimate in the service life plot are based on the 95% 

confidence interval calculated for median TICR for each CR. Error bars on only the positive or negative 

sides of the point estimate indicate that the point estimate itself is the positive or negative CI, respectively. 

Data is provided in this format to illustrate the relative precision of the median values in the plot, i.e., the 

range of potential error in the median value. As shown in the figure, the 95% confidence interval is very 

close to the point estimate for each CR.   

Based on the median reliability for each CR, typically CIP decks would have 52 years of service life before 

transitioning from CR 3, by repair, replacement, or deterioration to CR 2. As shown, about 40 years would 

be the time span between CR 8-5 and 12 years for CR 4-3. These data indicate that the rate of deterioration 

(in terms of assigned NBI ratings) increases as the condition of the deck decreases with a notable increase 

in rate for CR 5 and lower. This effect was found to be ubiquitous in the research.  
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Figure 7. Graph showing the service life for CIP decks statewide based on median reliability in CR 
3 – 8, showing A) quartiles and B) confidence intervals. 

The cumulative hazard plot for CIP decks is shown in Figure 8. The vertical axis is the cumulative hazard 

and the horizontal axis is the TICR for CIP decks. This graph provides another way of looking at CIP decks 
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performance. Contrary to the K-M curve where the reliability for each percentage point is a point estimate, 

the cumulative hazard is the integration of the hazard from the beginning of the reliability curve to a selected 

TICR. On the vertical axis, each digit represents 100% damage necessary to move the deck to the next 

lower CR. For example, for CIP decks in CR 7, it takes about 15 years to accumulate damages fully (100% 

or for the first time) to qualify for dropping to CR 6. If at this time, the deck is renovated (actually or 

conceptually) and put back in service in CR 7, it will take about 10 years to accumulate damage fully one 

more time and again drop to CR 6. In other words, older bridges accumulate damage more rapidly than 

newer bridges and consequently the rate (slope) of the curves are increasing with time.  

 

Figure 8. Plot showing cumulative hazard for CIP decks in CR 3-8. 

Based on the available data, during the 37 years, the CIP decks in CR 7 would accumulate damage five 

times – the CIP decks would be on the verge of dropping to CR 6 if the process were repeatable. As shown, 

CIP decks in CR 3 accumulate damage at a faster rate compared to other CRs, followed by CR 4 and CR 

8. Similarly, CR 5, 6, and 7 accumulate damage at a slower rate as demonstrated by the flatter slopes for 

the curves of these CRs. This type of cumulative hazard interpretation is defined as count-data [12].  
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If the TICR is divided by the number of times the cumulative hazard is reached for each CR, it provides an 

average TICR for each CR. Summing the TICR values would provide a service life estimate for CIP decks 

to deteriorate from CR 8 to CR 3 without any intervention. To perform this calculation, the coordinates of 

the ultimate point for each CR in Figure 8 were used. Dividing the TICR value (x-axis) for that point by 

the hazard value (y-axis) yielded the average TICR for that CR. This calculation was repeated for each CR 

and the resulting values summed. Based on this calculation, it would take 32.5 years for a deck currently in 

CR 8 to deteriorate to CR 2. This result is different than the service life calculated based on the median 

TICR because the median TICR value of 52 years of service life is based on the point estimate as compared 

to the cumulative hazard utilized to determine the service life of 32.5 years.   

Generally, the hazard plot is more difficult to interpret and more dependent on statistical measures than the 

median service life plot based on the results from the K-M analysis. For this reason, median service life 

plots are generally used in this report to illustrate the deterioration behavior of bridge components. The 

hazard function can also be used to statistically compare the effect of one covariate, for example, bridge 

span length or number of snow days, to another covariate to characterize the relative effect of that covariate 

on bridge deterioration. In this way, trends in the deterioration patterns of structures can be assessed and 

the relative impact of different parameters can be analyzed. In the following section, the effect of the 

covariates is investigated to determine how much of the deterioration for CIP decks could be explained by 

the covariates selected for the analysis.  

CIP Decks on Different Superstructures  

One of the key factors to be investigated in the research was the effect of the superstructure type on the 

deterioration behavior of bridges. This section discusses the effect of different types of superstructure 

designs and materials on the performance of bridge decks. The purpose of this analysis is to determine if, 

for example, CIP decks on steel structures, which tend to be more flexible as compared with PSC or RC 

structures, deteriorate at different rates than decks on PSC or RC superstructures. These data could be useful 

to decision-makers estimating life-cycle costs or planning lifetime maintenance for structures, or selecting 

superstructure materials for future bridges.  

Table 9 shows the count of different superstructure types with CIP decks. The column labelled “Analysis 

dataset” shows that there are six different superstructure types or families investigated for the performance 

of the CIP decks. The superstructure type is a categorical covariate with six levels (six different 

superstructure types). Before presenting the Cox regression result, the K-M analysis was completed for CIP 

decks on each of the six superstructure types individually and reliability and service life graphs were 

generated for CIP decks on each superstructure type.  
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Table 9. Table showing counts of different superstructure types with CIP decks. 

SI&A items 
SI&A description Count Analysis 

dataset 
Combined 

count 43A 43B 

4 2 Steel continuous stringer/multi beam girder 2,626 CIP decks on 
steel cont. girders 2,626 

3 2 Steel stringer/multi beam girder 1,564 
CIP decks on 
steel simple 

girders 
1,564 

5 2 Prestressed concrete stringer/multiple-beam or 
girder  147 CIP decks on 

PSC cont. girders 1,385 
6 2 Prestressed concrete continuous stringer/multi 

beam girder 1,238 

1 1 Concrete slab 237 
RCC slabs 989 

2 1 Concrete continuous slab 752 
1 4 Concrete tee beam 789 

CIP decks on 
RCC beams 1,019 

2 4 Concrete continuous tee beam 20 
1 6 Concrete box beam or girders – single or spread 5 
1 5 Concrete box beam or girders – multiple 0 

2 6 Concrete continuous box beam or girders – 
single or spread 193 

2 5 Concrete continuous box beam or girder – 
multiple 12 

5 4 Prestressed concrete tee beam 112 

CIP decks on 
PSC box beams 649 

6 4 Prestressed concrete continuous Tee beam 319 

5 5 Prestressed concrete box beam or girder – 
multiple 29 

5 6 Prestressed concrete box beam or girder – single 155 

6 5 Prestressed concrete continuous box beam or 
girder – multiple 13 

6 6 Prestressed concrete continuous box beam or 
girder – single 21 

Total number of CIP decks on all six different superstructure types 8,232 

Table 10 lists the number of events for each of the superstructure types selected in each of the CRs. Of note 

in these data is that the data for PSC continuous superstructures is heavily weighted toward CR 7 and 8. 

There is limited data for CR 3, 4, and 5, as noted by bold text in the table.  Because the construction of PSC 

bridges is more recent historically than other types of bridges, the bulk of the population remains in good 

condition. This should be considered in the interpretation of the results – those PSC bridges in CR 5-3 may 

be examples of bridges with quality of construction or other issues causing early-life deterioration. PSC 

box beam bridges also have limited data available in the CR of 5, 4, and 3, as shown in Table 10.  

Table 10. Count of CIP decks with different CR for each superstructure family.  
Count of CIP decks on different superstructure types 

Superstructure data set name CR 3 CR 4 CR 5 CR 6 CR 7 CR 8 
CIP deck on steel cont. girders 324 528 856 1,629 2,039 1,072 

CIP deck on steel simple girders 390 629 883 1,047 700 235 
CIP deck on PSC cont. girders 9 7 19 154 959 710 

RCC slabs 69 143 289 657 599 587 
CIP decks on RCC beams 182 351 530 631 374 95 

CIP decks on PSC box beams 4 18 16 59 402 228 
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A summary of the TICR for the median in each CR for all CIP decks regardless of the superstructure type 

and the service life for CIP decks on each superstructure type is presented in Table 11. As shown, the 

service life of the CIP decks on each superstructure type is different. The reason for the difference in the 

service life of the CIP decks on different superstructure types may not be the superstructure type alone. 

Other factors may affect the service life of decks on different superstructures (e.g., span length), but K-M 

modeling cannot account for these factors. As shown in Table 11, the analysis showed that RCC slabs 

showed the longest service life estimate, 59 years, and CIP decks on PSC box beams had the shortest 

estimated service life at 38 years. It was also found that CIP decks on continuous steel superstructures had 

a longer service life (54 years) as compared with the average service life estimate of 52 years, and CIP 

decks on continuous PSC girders had a shorter than average service life estimate of only 44 years. As 

mentioned previously, the PSC continuous superstructure data is skewed toward bridges in good condition, 

with relatively few examples of CIP decks in the fair to poor condition. Consequently, although these data 

are accurate according to the statistical modeling, these may not be fully representative of the performance 

of these decks looking toward the future.  

Table 11. Table showing TICR and service life for CIP decks on different superstructure types. 

Superstructure type Median TICR (year) for CR 8-3 Service 
life 8 7 6 5 4 3 

All CIP decks regardless of the superstructure type 7 11 14 8 5 7 52 
RCC slabs 7 14 17 8 6 7 59 
CIP decks on steel cont. girders 7 13 16 7 5 6 54 
CIP decks on steel simple girders 7 9 14 8 5 7 50 
CIP decks on RCC girders 2 9 14 10 6 8 49 
CIP decks on PSC cont. girders 8 14 9 5 31 51 44 
CIP decks on PSC box beams 5 9 7 8 71 21 38 
1 Data in this CR is very limited. 

Median service life graphs and reliability plots for CIP decks on each of the different superstructure types 

are shown in Appendix E to the report, but the combination of all the service life graphs is shown in Figure 

9. This figure can be used to compare the behavior of CIP decks on different superstructure types over the 

course of their service lives. The figure illustrates the surprisingly rapid deterioration of CIP decks on PSC 

box girders, which has an almost constant rate of deterioration that is greater than any other CIP/structure 

type combination. It is also notable that in the area of CR 8-6, CIP decks on PSC continuous girders actually 

have a lower rate of deterioration than any other bridge type. However, that rate is increasing for CR 5 and 

lower, where the data is much more sparse. Again, these data are accurate according to the model, but only 

time will tell if these data are representative looking forward. One interpretation of these data is that deck 

preservation activities to maintain decks in good condition would be advantageous to prevent the rapid 

onset of deterioration for CR 5 and lower. This is an important finding in the research and will be discussed 

more later in the report.  
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Figure 9. Estimated service life graph for CIP decks on different superstructure types.  

Cox Regression Analysis for CIP Decks 

This section describes the Cox regression analysis for CIP decks. The Cox regression is used to study the 

effects of particular parameters on the overall deterioration of CIP decks. The covariates available to 

consider are superstructure type, maximum span length, structure length, amount of salt used for deicing 

purposes (tons/lane miles), freeze/thaw cycle (days/year), snow (days/year), ADT, ADTT, and the spatial 

division – division of the state to districts or a combination of districts to divide the state into regions. Based 

on discussions with the technical committee for the research project, the variation in deterioration patterns 

between districts was most practical for implementation of the results of the research. Therefore, the 

covariate of districts was focused on for the analysis.  

Table 12 contains the output for Cox regression for each of the covariates applied separately. The table 

indicates the -2log L value and the likelihood ratio. These statistical values are used to determine the 

significance of the different covariates when applied to the deterioration model. More complete descriptions 

of these parameters can be found in the appendices, including tables showing the general statistics such as 
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the median values for covariates for each different deck/superstructure combination. The significance of 

these data shown in Table 12 is to determine which of the covariates have a statistically significant effect 

on the deterioration of bridges. The data in Table 12 show that most of the covariates assumed in the model 

are statistically significant when examined individually, with the exception of ADT and ADTT. It was 

found that ADT and ADTT did not have a statistically significant effect on the deterioration of CIP decks, 

even when combined with other covariates.  

Table 12. Table showing maximum likelihood estimate for CIP deck covariates. 

Var. no. Variables in model -2log 𝑳𝑳�  Likelihood 
ratio  Result  

0 None 242,492.64  Null model 
1 Age in TICR 242,446.15 46.49 Significant 
2 Structure length (ft.) 242,479.71 13.99 Significant 
3 Maximum span length (ft.) 24,2435.75 56.89 Significant 
4 Freeze/thaw (days/year) 242,455.34 37.30 Significant 
5 Snow (days/year) 242,463.27 29.36 Significant 
7 Salt (tons/lane miles) 242,419.31 73.33 Significant 
8 ADT 242,492.25 0.39 Not significant 
9 ADTT 242,492.41 0.23 Not significant 
10 District 242,398.57 94.07 Significant 
11 Region 242,442.91 49.73 Significant 
12 Superstructure type 242,228.75 263.89 Significant 

Table 13 lists the effect of covariates on the performance of the CIP decks. This table presents the final 

results after all modeling steps are completed and all assumptions and diagnosis were met. The table 

includes details of the results from the Cox regression in raw form. These data are provided for illustration 

for CIP bridge decks. For other components these data are available in Appendix C but will not be shown 

in the primary text because it is somewhat difficult to interpret and not particularly useful to practitioners. 

These data are shown here to illustrate the process of Cox regression modeling and demonstrate the research 

process. To apply these data to assess trends in deterioration or the impact of specific parameters, these data 

must be applied as a hazard ratio to compare one specific set of parameters to another, which is shown in 

the following sections. Regardless, the following section describes these results in detail, followed by 

practical applications of these data in the form of hazard ratios, which are used to demonstrate the trends in 

the data. 

The first column lists the name of the covariate, the second column shows the number of degrees of 

freedom, the third column lists the parameter estimate (ꞵ�) for each covariate, the fourth column contains 

the standard error for the parameter estimate, the fifth column contains the chi-square value, and the last 

column contains the probability value (p-value) comparing the chi-square from the fifth column to the 

critical value of theoretical chi-square for the given degree of freedom.  

In Table 13, the first five rows contain the five levels of the categorical covariate superstructure type. The 

CIP decks on superstructure type steel continuous girders is not listed because it was selected as the 
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reference to which other combinations are compared, which is necessary for analysis of categorical 

covariates. In this analysis, CIP decks on steel continuous girders were selected as the reference. Each of 

the five superstructure types have a parameter estimates and associated standard error that was used to 

construct the confidence interval for the parameter estimate. The last column for the first five rows shows 

that the performance of the CIP decks on different superstructure types is different as indicated by the p-

value less than 0.05 or 5%. This p-value is a measure of the likelihood that the performance is NOT 

different, so a p-value of 5% or less means there is at least a 95% likelihood the performance IS different.  

Row 6 lists the parameter of the age in TICR and row 7-11 contains the interaction of age in TICR with 

superstructure types. The interaction of age in TICR with superstructure types demonstrate that age affects 

the performance of the CIP decks on different superstructure types differently, with the exception of CIP 

decks on the PSC continuous girders where the p-value is greater than 0.05. This shows that the performance 

of the CIP deck on PSC continuous girders is not different than CIP deck on the reference superstructure 

type – steel continuous girders. These data indicate that there is a statistical difference between the effect 

of age on deterioration of bridge decks (other than for PSC). The effect is relatively small, and the negative 

value indicates that the performance is better when compared to CIP decks on continuous steel 

superstructures.  

Table 13. Table showing Cox regression model output for CIP decks showing superstructure type, 
age, and district covariates results.  

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square Pr > chi-
square 

1 RCC slabs 1 0.197 0.049 15.83 <.0001 
2 CIP deck on RCC beams 1 0.336 0.061 30.40 <.0001 
3 CIP deck on steel simple girders 1 0.252 0.057 19.61 <.0001 
4 CIP deck on PSC cont. girders 1 0.110 0.046 5.592 0.018 
5 CIP deck on PSC box beams 1 0.900 0.058 239.2 <.0001 
6 Age in TICR 1 0.022 0.001 391.7 <.0001 
7 Age in TICR*RCC slabs 1 -0.015 0.001 101.1 <.0001 
8 Age in TICR*CIP deck on RCC beams 1 -0.021 0.002 194.3 <.0001 
9 Age in TICR*CIP deck on steel simple 

girders 
1 -0.013 0.001 87.79 <.0001 

10 Age in TICR*CIP deck on PSC cont. girders 1 -0.002 0.003 0.403 0.525 
11 Age in TICR*CIP deck on PSC box beams 1 -0.028 0.004 44.34 <.0001 
12 NW 1 -1.388 0.538 6.643 0.010 
13 KC 1 -1.078 0.572 3.558 0.059 
14 CD 1 -2.567 0.475 29.17 <.0001 
15 SL 1 -1.188 0.454 6.844 0.008 
16 SW 1 -2.365 0.475 24.78 <.0001 
17 SE 1 1.320 0.621 4.511 0.033 

Rows 12 -17 show the effect of district on the performance of the CIP decks. The Northeast (NE) district 

is not listed in the table because this categorical covariate was selected as the reference. From the p-value 
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column, it is evident that CIP decks located in different districts perform differently, except for the KC 

district which has a p-value greater than 0.05. 

Table 14 shows the results of the Cox regression analysis for the covariates of salt application, freeze/thaw, 

and snow. Row 1 shows the effect of salt on the performance of the CIP decks and rows 2-7 show the 

interaction of salt with each of the six districts. The overall value for salt application was negative and not 

statistically significant when considering all bridges, but when examined at the district level, the effect of 

salt application was statistically significant in some cases. The p-value column for rows 2-7 indicates that 

the effect of salt in NW, CD, and SW is different than the effect of salt in NE, as demonstrated by the 

smaller p-values. In contrast, the effect of salt in KC, SL, and SE is not statistically different than the effect 

of salt in NE as shown by the p-values greater than 0.05.  

Table 14. Table showing Cox regression model output for CIP decks showing salt application, 
freeze/thaw, and snow covariate results. 

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square Pr > chi-
square 

1 Salt (tons/lane miles) 1 -0.108 0.132 0.667 0.414 
2 Salt*NW 1 0.546 0.193 8.000 0.005 
3 Salt*KC 1 0.212 0.161 1.732 0.188 
4 Salt*CD 1 1.028 0.171 35.93 <.0001 
5 Salt*SL 1 0.193 0.134 2.072 0.150 
6 Salt*SW 1 1.240 0.191 42.16 <.0001 
7 Salt*SE 1 -0.547 0.426 1.646 0.199 
8 Freeze/thaw (days/year) 1 -0.062 0.004 198.0 <.0001 
9 Salt * freeze/thaw 1 0.010 0.001 50.12 <.0001 

10 Snow (days/year) 1 0.070 0.006 130.9 <.0001 
11 Salt*snow 1 -0.012 0.002 31.50 <.0001 

Row 8 contains the effect of freeze/thaw cycles on the performance of the CIP decks. As shown, the 

parameter estimate for this covariate is negative, which indicates that increasing the number of freeze/thaw 

cycles reduces the hazard of deterioration. In other words, in the CIP decks data set, there are bridges with 

long TICRs and more freeze/thaw cycles, which causes the negative parameter estimate. Freeze/thaw cycles 

would be expected to contribute to accelerated deterioration based on experience and previous research, but 

these data indicate the opposite when considering only the freeze/thaw cycles without other covariates [14]. 

Row 9 contains the interaction effect of salt and freeze/thaw cycles, and as shown this effect is statistically 

significant. Row 10 contains the effect of snow on the performance of the CIP decks and row 11 shows the 

statistically significant interaction effect of snow and salt. The snow and salt interaction is also negative, 

but also quite small at only about 1%.  

The parameter estimates listed in Table 13 and Table 14 are difficult to interpret in raw form, in part because 

some are compared to a reference. Additionally, these data are for covariates applied individually or with 

one other covariate with which there is interaction. However, these values can be used to calculate the 
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hazard ratios for the desired covariate for the purpose of analyzing deterioration trends and the effect of 

covariate on the deterioration pattern, including the interaction of covariates. The calculation of the hazard 

ratios is provided here and the hazard ratios for all the covariates are shown in Table 15 and Table 17.  

For example, the hazard ratio of deterioration for RCC slabs compared to CIP decks on steel continuous 

girders can be calculated as follows. The numerator is the parameter estimates for the RCC slab and the 

denominator is the parameter estimates for the referenced level – CIP deck on steel continuous girders. As 

shown in Table 13, the parameter estimate for superstructure type RCC slab is listed in row 1 and the 

parameter estimate for the referenced superstructure type (CIP deck on steel continuous girders) is zero. 

Also, there is interaction effect for superstructure type and age in TICR. The parameter estimate 0.022 listed 

in row 6 is the parameter estimate for age effect for CIP decks on steel continuous girders, and the parameter 

estimate -0.015 in row 7 is the relative age effect for RCC slabs, and the absolute age effect for RCC slabs 

equal 0.022-0.015=0.007. The mean age in TICR value, which is the average age of a deck in a particular 

CR, is 29.92 yrs. Since the hazard ratio for effect of superstructure type is calculated, the age in TICR in 

the interaction term is kept equal for both types.  

 ℎ(𝑆𝑆𝑆𝑆 = 𝐻𝐻𝑅𝑅𝑅𝑅 𝐼𝐼𝑏𝑏𝑦𝑦𝑏𝑏)
ℎ(𝑆𝑆𝑆𝑆 = 42) =

𝐴𝐴0.197×(𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑐𝑐𝑠𝑠𝑏𝑏)+(0.022−0.015)∗29.92

𝐴𝐴0×(𝑅𝑅𝐶𝐶𝐶𝐶 𝑏𝑏𝑏𝑏𝑐𝑐𝑘𝑘 𝑜𝑜𝑜𝑜 𝑠𝑠𝑡𝑡𝑏𝑏𝑏𝑏𝑐𝑐 𝑐𝑐𝑜𝑜𝑜𝑜𝑡𝑡.𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠)+0.022∗29.92 =
1.501
1.931

= 0.78 (5) 

The hazard ratio indicates that RCC slabs has 78% hazard of deterioration compared to CIP decks on steel 

continuous girders, or in other words, the hazard of deterioration for RCC slabs is 22% less than the hazard 

of deterioration for CIP decks on steel continuous girders. This output is shown in Table 17 where RCC 

slab is compared with CIP decks on steel continuous girders. The inverse of the ratio would provide the 

hazard ratio of CIP decks on steel continuous girders compared with RCC slabs and that is equal to 1.29, 

or CIP decks on steel continuous girders has 29% more hazard of deterioration than RCC slabs. In other 

words, CIP decks on steel continuous girders deteriorate more rapidly than RCC slabs. The confidence 

interval (CI) for the hazard ratio is calculated by equation (6) where (ꞵ�) is the parameter estimate and se is 

the standard error of each parameter estimate listed in Table 13. 

95% 𝑅𝑅𝐼𝐼 = 𝐴𝐴[ꞵ�±1.96×𝑠𝑠𝑏𝑏] (6) 

Similar calculations were completed for all the covariates considered for CIP decks and the result is shown 

in Table 15 thru Table 17. These tables contain the hazard ratios for all the covariates considered for the 

CIP decks. Table 15 contains the hazard ratios for each covariate and the CI for the hazard ratio. Statistically 

nonsignificant hazard ratios are those with confidence intervals containing one (1), and these are shaded in 

the table. For example, the effect of salt on the performance of CIP decks in NE shows that for each extra 

ton of salt the hazard is increased by 24%, but since the CI for this point estimate contains one (1), this 
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effect is not statistically significant. In other words, the performance of CIP decks might be 24%, but the 

CI includes the value of 1.0, which indicates that the performance might not be different (i.e., 0% different) 

within the overall confidence interval. Consequently, this cannot be viewed as a statistically significant 

result.  

For the effect of covariates investigated on the district level an average effect is also provided as shown in 

the last column of Table 15. For example, on average, increasing the amount of salt by one ton per lane 

mile would increase the hazard of deterioration by 2.13, or the hazard would be doubled, on average. These 

data can also be examined on a district-by-district level, for example, for each increase in one ton of salt in 

the KC district, the increased hazard is 54%, while for the central district the value is ~350% or 3.5 times 

higher. Given that the rate of salt application was derived from some limited historical data, and is not that 

precise, the average value is probably more indicative of the overall trend.   

The effect of other covariates and their interactions are also shown in the table. For example, a 10-year 

increase in age of CIP decks results in the hazard ratio increasing by 10%, holding all other covariates 

constant. So, if two decks were in CR 6, and one was on a bridge that was 20 years old, and the second was 

30 years old, the 30-year-old bridge decks has 10% more hazard, or risk of transitioning to the next lower 

CR as compared with the 20-year-old bridge.  

The effect of structure length is provided as well in Table 15. This effect is calculated using a separate 

model where maximum span length is replaced by the structure length and the Cox regression model is 

fitted to the data. The reason for doing so is that maximum span length and structure length are correlated 

to each other because longer bridges also tend have longer spans. One remedy for the effect of correlated 

covariates is to build separate models using each correlated covariate. As shown, for every 100 ft. increase 

in structure length of a CIP deck, the deterioration hazard is increased by one percent (1%). In terms of 

span length, the hazard is increased 3% for each additional 10 ft. of span length. These data can be 

interpreted broadly that the overall structure length has only a small or no effect on the deterioration, but 

increases in the maximum span length have a larger impact on deterioration, increasing 3% for every 10 

additional ft. of maximum span length.  
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Table 15. Table showing the effect of covariates on cast-in-place bridge decks. 

Covariate name Point 
estimate 

95% 
confidence 

interval 

Average 
point 

estimate 

Salt (one tons/lane 
miles) at mean 

snow =39 
days/year and 

mean freeze/thaw 
cycle = 83 
days/year 

NE 1.24 0.98 1.58 

2.13 

NW 2.15 1.59 2.90 
KC 1.54 1.25 1.90 
CD 3.48 2.74 4.41 
SL 1.51 1.35 1.68 
SE 0.72 0.32 1.60 
SW 4.30 3.23 5.73 

Age in TICR (10 
years) 

CIP deck on PSC cont. girders 1.22 1.16 1.29 

1.10 

CIP deck on PSC box beams 0.95 0.87 1.02 
RCC slab 1.07 1.05 1.10 

CIP deck on RCC beams 1.01 0.99 1.04 
CIP deck on steel cont. girders 1.25 1.22 1.27 

CIP deck on steel simple 
girders 1.10 1.07 1.12 

Maximum span length (10 ft.) 1.03 1.02 1.04 1.03 
Structure length (100 ft.) 1.01 1.01 1.02 1.01 

Snow (10 days, at salt mean =2.93) 1.39 1.32 1.46 1.39 
Freeze/thaw cycle (days/year) 0.72 0.69 0.74 0.72 

Table 16 shows the hazard ratio of CIP deck performance compared between districts. The covariate district 

contains factors other than those explicitly included in the analysis. In other words, the covariate district or 

region contains “everything else” information not captured by other covariates in the model. The effect of 

district might encompass anything, such as different inspection practices among districts, different quality 

of construction materials, or any other factors that are not captured explicitly by other covariates in the 

model. If the covariate district or region was not statistically significant in the presence of other covariates, 

it could be described that the other covariates define all the variability in the model and district or region is 

not significant and could be dropped out of the model. But if the covariate district or region is significant 

in the presence of other covariates, which it is in this case, it indicates that there is information in the 

covariate district or region that is not captured by other covariates [15]. The hazard ratio was computed at 

one ton of salt per lane mile for each district since there is an interaction effect of salt and district. All other 

covariates were kept equal – same superstructure type, equal number of snow days, equal maximum span 

length or structure length, and equal age in TICR. In this way, the data is normalized to illustrate the trends 

based on salt application. Some of the hazard ratios are not significant and these cells are shaded. For 

example, the hazard ratio of deterioration for a CIP deck located in Central (CD) district compared to a CIP 

deck located in Kansas City (KC) for all other covariates being equal is 51%, but the CI shows that this 

hazard ratio is not statistically significant – the performance might be the same, because the confidence 

interval includes 1.0. On the other hand, the hazard ratio of a CIP deck located in CD compared to a CIP 

deck located in NE (with all other covariates being equal) is 22% and this comparison is statistically 

significant. This means that the decks in NE have deteriorated more rapidly than decks in CD.  
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Table 16. Comparison of the effect of 1 ton of salt per mile in different districts. 

Comparison of districts at salt = one tons/lane miles 

Comparison  Point 
estimate 95% confidence interval 

CD KC 0.51 0.23 1.11 
CD NE 0.22 0.12 0.39 
CD NW 0.50 0.26 0.95 
CD SE 0.10 0.06 0.16 
CD SL 0.58 0.32 1.06 
CD SW 0.66 0.40 1.11 
KC NE 0.42 0.19 0.95 
KC NW 0.98 0.42 2.28 
KC SE 0.19 0.10 0.40 
KC SL 1.14 0.51 2.57 
KC SW 1.30 0.61 2.75 
NE NW 2.14 1.18 4.57 
NE SE 0.46 0.28 0.76 
NE SL 2.71 1.43 5.14 
NE SW 3.08 1.75 5.42 
NW SE 0.20 0.11 0.35 
NW SL 1.17 0.59 2.32 
NW SW 1.33 0.72 2.46 
SE SL 5.86 3.56 9.65 
SE SW 6.67 4.51 9.86 
SL SW 1.14 0.65 2.00 

Similar to Table 16, Table 17 presents the hazard ratio for the effect of the superstructure type on the 

performance of the CIP decks. In this model, the mean age in TICR is kept constant because there is an 

interaction effect of age in TICR with the superstructure type. For example, assuming that the mean age in 

TICR was the same for a steel simple girder bridge deck and an RCC slab, the point estimate for the hazard 

ratio is 0.89, meaning that the RCC slab has a smaller hazard (i.e., deteriorates slower) as compared to the 

CIP deck on a steel simple girder.  

The hazard ratios for CIP decks on different superstructures listed in Table 17 could be used to rank the 

performance of the CIP decks qualitatively from the best performing CIP decks to the worst performing 

CIP deck while keeping all other covariates equal. In the analysis, the mean age in TICR is kept constant. 

The hazard ratios compared one superstructure type to a reference superstructure type to produce the hazard 

ratio of one compared with the other. For example, comparing CIP deck performance for an RCC slab as 

compared with a CIP deck on a steel girder bridge, the RCC slab has only 89% of the hazard as compared 

with the steel girder, or a CIP deck hazard is 1/0.89 = 1.12 or about 12% more risk. Such a ranking is shown 

in the bottom part of Table 17, where the hazard ratios were used to form a ranking of hazard for CIP decks 

on different types of superstructures.  
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Table 17. Table showing the effect of covariates on cast-in-place bridge decks. 

Comparison of CIP deck performance at mean age in TICR 
Comparison  Point estimate 95% confidence interval 

RCC slab RCC girders 1.04 0.97 1.12 
RCC slab Steel simple girder 0.89 0.84 0.95 
RCC slab Steel cont. girder 0.78 0.74 0.82 
RCC slab PSC cont. girder 0.74 0.65 0.83 
RCC slab PSC box beam 0.72 0.60 0.87 

RCC girder Steel simple girder 0.86 0.80 0.92 
RCC girder Steel cont. girder 0.75 0.70 0.80 
RCC girder PSC cont. girder 0.71 0.62 0.80 
RCC girder PSC box beam 0.69 0.57 0.84 

Steel simple girder Steel cont. girder 0.87 0.82 0.92 
Steel simple girder PSC cont. girder 0.83 0.73 0.93 

Steel girder PSC box beam 0.81 0.67 0.98 
Steel cont. girder PSC cont. girder 0.94 0.84 1.06 
Steel cont. girder PSC box beam 0.93 0.77 1.12 
PSC cont. girder PSC box beam 0.98 0.79 1.21 

Ranking CIP decks performance on different superstructures 
Best -1  2 3 4 5 Worst - 6 

CIP deck on 
RCC girders RCC slab 

CIP deck on 
steel simple 

girders 

CIP deck on 
steel cont. 

girders 

CIP deck on 
PSC cont. 

girder 

CIP deck on 
box beams 

The ranking of the decks using the hazard ratio in Table 17 produces a different ranking than the service 

life rankings listed in Table 11, which lists the estimated service life based on historical data (K-M model). 

In Table 11, the data is based on the actual historical performance of the different deck and superstructure 

combinations, regardless of how other covariates, such as span length, age, etc. may differ for the different 

deck/superstructure combinations. In Table 17, these other covariates are held constant between the 

different deck/superstructure types, so these data are in effect normalized to a uniform set of covariates. In 

the real world, these covariates are different. For example, long-span RCC slabs are not typically 

constructed and therefore are not found in the inventory.  

One interpretation of these data is that for maintenance and preservation decision-making, Table 11 

illustrates how the bridges in Missouri have actually performed historically and is most relevant for 

managing the existing structures. For design of new structures, to compare the use of one material to 

another, for example, Table 17 provides relevant data because other covariates like span length and age 

would be the same at the design stage for one particular structure. Therefore, these normalized data in Table 

17 show relevant data for design decisions when comparing two different options for the same span. In a 

similar way, Table 15 shows relative effects of design parameters like the span or structure length, and the 

effect of certain environmental factors like salt application or number of snow days.  
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Effect of Salt on Bridge Decks  

The Cox regression analysis showed that salt had the highest effect on the deterioration of the CIP decks. 

This relationship was examined considering the amount of salt and the service life of the CIP decks in each 

MoDOT district. Table 18 lists the average amount of salt (tons/lane miles) for each district over ten years 

of the available salt data from 2001-2010 vs. the service life of the CIP decks (based on median values from 

the K-M model) located in each district. It was found that reduced service life corresponded with increased 

use of salt for most districts except for the KC District. The lower the amount of salt used, the longer the 

service life of the CIP decks and vice versa. As shown, the average amount of salt used by the Southeast 

district is the lowest, and the service life of the CIP decks located in this district is the longest. This 

relationship ignores other factors that may affect the service life of the CIP decks, but it is another way of 

looking at the effect of salt on the performance of the CIP decks.  

Table 18. Table showing the relationship between the amount of salt used by districts vs. the CIP 
decks service life. 

District name Highway length Number of CIP 
deck 

Mean salt 
(tons/lane miles) 

CIP deck 
service life 

SE 16,206 1,671 1.24 57 
KC 7,931 1,464 4.23 54 
SW 14,697 1,395 2.16 53 
NW 11,385 1,239 2.72 51 
NE 9,810 830 2.89 51 
CD 11,568 1,025 2.65 51 
SL 5,951 1,223 5.10 50 

Figure 10 depicts the relation between the service life of the CIP decks and the amount of salt used by 

districts in a scatter plot. As shown in the figure, there appears to be a consistent trend of increasing salt 

use leading to shorter service life, except for the KC District. The KC District appears to be an outlier as 

compared with other districts. Given that the quality of the salt use data may have some imperfections, this 

outlier may be a result of the data quality and not a real affect.  
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Figure 10. Plot showing the relationship between the service life of the CIP decks vs. the quantity of 
salt used by districts. 

An analysis was developed to provide a graphical illustration of the effect of increased salt use on the 

deterioration pattern of a CIP deck on a PSC superstructure. Figure 11 shows the reliability model results. 

This combination of a CIP deck on a PSC superstructure was selected for illustration because of the 

prevalence of PSC structures in new construction. The hazard ratio was determined holding other covariates 

equal and calculating the hazard ratio for salt application of 2.85 tons/mile vs. 3.85 tons/mile, and these 

data were used to generate the plot from the existing deterioration data. As shown in the figure, the 

likelihood of transitioning to the next lower CR is increased with the additional application of one additional 

ton of salt per mile. Consequently, the likelihood of failure (transition) is increased and the overall service 

life it decreased. For example, in these data, if the service life was estimated based on the median (50%) 

transition, the service life is reduced from ~64 years to ~50 years, or about a 22% decrease in service life.  
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Figure 11. Graphs showing the effect of salt use increasing from 2.85 to 3.85 tons/mile for a CIP 
deck on PSC continuous girder.  

Reliability Analysis for Superstructures 
This section presents the reliability analysis for superstructures. The reliability and the service life graph 

are produced for each superstructure type separately to show the trend and capture any difference in TICR 

among the superstructure types. Later, the superstructure type is used along with other covariates to see if 
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there are any differences between the performance of the superstructure types using the Cox regression and 

measure the effect of each covariate on the performance of superstructures. 

Table 19 lists the superstructure types available for analysis. As shown, the 8,859 bridges with 

superstructures that are available for reliability analysis fall in one of the six superstructure types in terms 

of construction material or construction type. The superstructures are grouped either due to their 

construction material or construction type in order to have sufficient number of observations for each group, 

as previously discussed. The column labelled “Analysis data set” lists the name of the six different 

superstructure types that are included in building the K-M analysis and the Cox regression. 

Table 19. Table showing different types of superstructures, their count, and their combination for 
analysis. 

SI&A items 
SI&A description Count Analysis data set Combined 

count 43A 43B 
4 2 Steel continuous stringer/multi beam girder 2,645 Steel cont. girders 2,645 
3 2 Steel stringer/multi beam girder 1,602 Steel simple girders 1,602 

5 2 Prestressed concrete stringer/multiple-beam or 
girder  174 

PSC cont. girders 1,436 
6 2 Prestressed concrete continuous stringer/multi 

beam girder 1,262 

1 1 Concrete slab 247 
RCC slabs 1,014 

2 1 Concrete continuous slab 767 
1 4 Concrete tee beam 790 

RCC girders 1,022 

2 4 Concrete continuous tee beam 20 
1 6 Concrete box beam or girders - single or spread 5 
1 5 Concrete box beam or girders - multiple 2 

2 6 Concrete continuous box beam or girders - single 
or spread 193 

2 5 Concrete continuous box beam or girder - 
multiple 12 

5 4 Prestressed concrete tee beam 169 

PSC box beams 1,140 

6 4 Prestressed concrete continuous tee beam 344 

5 5 Prestressed concrete box beam or girder - 
multiple 384 

5 6 Prestressed concrete box beam or girder – single 201 

6 5 Prestressed concrete continuous box beam or 
girder – multiple 16 

6 6 Prestressed concrete continuous box beam or 
girder – single 26 

Total number 8,859 

The reliability graph using the K-M method for steel continuous girders is shown in Figure 12. The vertical 

axis shows the reliability in percentage of the superstructures and the horizonal axis show the TICR. This 

graph could be used to understand the performance of steel continuous girders based on the NBI CR without 

taking into account the effect of any covariate that would be included in building the Cox regression model 

later. For example, the probability for steel continuous girders to stay longer than 15 years in CR 7 is over 

50%. Or the probability for steel continuous girders in CR 4 to stay for more than 10 years in this CR is 



   

49 

less than about 5%. Also as shown, generally steel continuous girders stay longer in CR 7 followed by CR 

8, 6, and 5. The performance in CR 7 is notable, being somewhat dramatically slower rate of transition to 

CR 6 as compared with other CRs. Also notable is that the deterioration in CR 8, 7 and 6 is markedly slower 

than for CR 5, 4 or 3. This means that once damage begins to accumulate, presuming that the CR falls from 

“good” condition to “fair” condition as a result of the accumulating damage, the rate of deterioration 

increases significantly.  

 

Figure 12. K-M graphs showing the reliability curves for steel continuous girders in CR 3 – 8. 

These data could be interpreted to provide rationale for investments in maintenance and preservation 

activities. Although not specifically studied within this research project, other research conducted with 

MoDOT and other states, combined with practical experience, indicates that the primary damage mode 

affecting steel bridges is corrosion damage [16, 17]. The corrosion damage most commonly occurs in the 

area below joints that are leaking, causing coatings to fail and initiating corrosion damage. As a result, the 

CR drops over time as corrosion damage becomes more advanced. Preservation strategies such as 

maintaining leak-free joints and spot or zone painting to repair deteriorating coatings would help maintain 

structures in the fair to good condition and avoid the rapid deterioration that is shown in the figure above. 

Previous research also illustrated the zone maintenance painting with Calcium Sulphonate, a maintenance 
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coating that can be easily applied in the field, was effective in preventing corrosion damage if the joint was 

also repaired to prevent water and deicing chemicals from coming in repeated contact with the 

superstructure [17].  

The reliability graph could be used to construct the service life graph for steel continuous girders at any 

percentage point desired. Such a graph is shown in Figure 13 for the median reliability. As shown, the 

service life for steel continuous girders in CR 8 – 3 calculated at median TICR is 44 years. The service life 

graph is shown with the 25th, 50th, and 75th percentiles to illustrate the distribution of results. As shown in 

the figure, the results are somewhat right skewed, showing that some steel continuous girders have much 

longer service lives than shown with the median values. This is consistent with experience; steel bridges 

that are 60 or 80 years old are not uncommon. Steel superstructures that deteriorate to CR 3 in less than 20 

or 30 years, on the other hand, are very uncommon. Reliability and service life graphs for other 

superstructure types listed in Table 19 are shown in Appendix F. 

 

Figure 13. Graph showing the service life based on median reliability for steel continuous girders in 
CR 3 – 8. 

The overall performance of different bridge types in terms of median service life are shown in Figure 14. 

The figure illustrates the service life for different types of superstructures as determined from the median 

TICR for each CR. Each of the curves shown in this graph can be found individually in Appendix G. The 
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data showed that the shortest service life was for PSC box beams, which showed the trend of deteriorating 

more rapidly than any other bridge type through the primary service life of the bridge, when the CR is 

between 8 and 4. It is also notable the steel continuous steel girder bridges performed relatively better early 

in their service life, with CR 8-7, but deterioration accelerated relative to other bridge types for CR 6-3. It 

is also notable that for CR 4, most bridge types had very similar service lives up to reaching CR 4, poor 

condition. If one defined the service life as when the superstructure moves from satisfactory to poor 

condition, then RCC slabs clearly outperform the other bridge types, and PSC box beams clearly perform 

poorly, but other bridge types all have approximately the same median times, about 40 years.  

 

Figure 14. Service life plot for different types of superstructures. 

The rank order of the superstructure types is shown in Table 20, which shows the 25th, 50th (median), and 

75th percentiles for service life based on the median value of TICRs in each CR. The table also shows the 

ratio of the median service life for each bridge type as compared to the average of the median service life. 

As shown, RCC slabs and RCC beam bridges have a greater than average median estimated service life, 

while steel simple, steel continuous, and PSC continuous bridges showed an estimated median service life 
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near the overall average, and PSC box beams have the shortest median service life. Also shown in the table 

is the average service life, which is consistently longer than the median service life due to the fact that some 

bridge superstructures having much longer service lives than the median value. This is the same effect 

illustrated in Figure 13 for steel continuous girders showing the 75th percentile skewed to the right.  

Table 20. Ranking of SS types showing 25, 50, and 75 percentiles and average service life based on 
TICR. 

 25th% Median 75th% Avg. Median 
SS type years years years years ratio 

RCC slab 31 61 95 62 125% 
RCC beam 29 52 91 57 106% 

Steel simple  27 49 74 50 100% 
PSC cont. 23 48 79 50 98% 
Steel cont. 25 44 74 48 90% 
PSC box 23 41 71 45 84% 

Average service life 26 49 81 52  

Cox Regression Analysis for Superstructures 

The Cox regression model output to investigate the effect of covariates on the performance of the 

superstructure types is presented next. The initial step of the Cox regression model building was to 

determine the statistically significant covariates. It was found that the number of snow days and the 

ADT/ADTT covariates were not significant for the Cox regression analysis of superstructure types when 

applied individually. Data on the significance measures are included in Appendix C. In the next step, these 

covariates were combined as outlined in the model development section to investigate the effect of 

covariates on the performance of superstructures. In the combined model, some of the covariates may 

become insignificant, or some insignificant covariates may become significant in the presence of other 

covariates. These data are also available in Appendix C.  

Table 21 shows the effect of statistically significant covariates on superstructure types in table format. The 

first covariate listed in this table is the effect of salt on the performance of bridge superstructure TICR. The 

effect of salt on superstructure performance is subdivided by the amount of salt used in each of the seven 

districts. As noted in the first column, the effect of salt is provided for increasing one ton of salt, that is 

from no salt to one ton of salt or from two tons of salt to three tons of salt per lane mile. The effect of salt 

on the performance of the superstructures is analyzed for the case where every other covariate included in 

the model is set equally. That is, the bridge is located in the same district, has the same maximum span 

length, has the same age in TICR, and is of the same superstructure type. With these two things in place, 

the effect of salt on the performance of the superstructures is provided by the point estimate and the 95% 

confidence interval. The 95% confidence interval means that if 100 bridges are selected to find the effect 

of salt on their performance for the case where every other covariate being equal, we are confident that 95 

of the responses will fall within the provided range.  
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Table 21. Table showing the effect of covariates on superstructures in terms of hazard ratios. 

Covariate name Point 
estimate 

95% confidence 
interval 

Average 
point 

estimate 

Salt (one tons/lane 
miles) 

NE 1.88 1.43 2.48 

2.58 

NW 0.55 0.36 0.86 
KC 1.78 1.41 2.24 
CD 4.15 3.20 5.38 
SL 1.34 1.20 1.51 
SE 0.48 0.23 0.98 
SW 7.91 6.04 10.36 

Maximum span 
length (10 ft.) 

Steel continuous girders 1.03 1.03 1.04 

1.05 

Steel simple girders 1.00 0.98 1.02 
PSC cont. girders 1.06 1.03 1.09 
PSC box beams 1.15 1.12 1.17 

RCC slabs 1.03 1.03 1.06 
RCC beams* 0.98 0.95 0.99 

Age in TICR (10 
year) 

Steel continuous girders 1.23 1.20 1.26 

1.11 

Steel simple girders 1.11 1.08 1.13 
PSC cont. girders 1.24 1.17 1.30 
PSC box beams 1.03 0.96 1.11 

RCC slabs 1.05 1.02 1.08 
RCC beams 0.98 0.95 1.01 

Salt has the detrimental effect of increased deterioration on bridge superstructures with different amounts 

for each district. For example, the mean effect of increasing one ton of salt on a bridge superstructure in 

NE would increase the hazard of a superstructure type to transition to the lower CR 1.88 times, or 

approximately doubles the hazard of transitioning to the lower CR. This effect is as low as 1.43 for some 

of the superstructures, or as high as 2.48 for others in that district, as shown by the confidence interval. 

Similarly, the mean effect of salt on superstructures in KC is 1.78 or as before, it approximately doubles 

the hazard of transitioning to the lower CR. This effect is as low as 1.41 for some superstructures or as high 

as 2.24 for that district. As a last demonstration, the mean effect of increasing the application of salt on a 

roadway by one ton per mile in SW results in the hazard of a superstructure transitioning to a lower CR 

would increase by almost eight times (7.91). One point to remember is that the base hazard or no hazard is 

1, as e0=1. This effect is as low as 6.04 for some superstructures and as high as 10.36 for others in that 

district. 

The effect of salt on superstructures in NW and SE is nondetrimental as the point estimate and the 

confidence interval are less than one, which correspond to the negative parameter estimate for these two 

districts. For example, the mean effect of salt on superstructures in NW reduces the hazard of transitioning 

to lower CR by 0.45 (1-0.55). This estimate is as low for some superstructures as 0.64 (1-0.36) and as high 

as 0.14 (1-0.86). Similarly, the mean effect of salt on superstructures located in SE reduces the hazard by 

0.52 (1-0.48). This effect is as low as 0.77 (1-0.23) for some superstructures and as high as 0.02 (1-0.98). 

The reason for the effect of salt on superstructures in NW and SE is that superstructures have stayed longer 
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in a CR in these two districts, or have longer TICR even though the roadway is treated with more salts. This 

result is the opposite of what would be assumed since application of additional salt on the roadway would 

be assumed to result in increased rates of deterioration. As noted in the section titled “Location and 

Environmental Exposure,” the salt data had some limitations and conservative assumptions were made 

when the salt data was reduced for use in the analysis. These assumptions may have resulted in some 

inaccuracies when examined on a district-by-district basis. Hence, the average effect of salt which is 

calculated as the average of the mean effect of salt for the seven districts to provide a general value that 

could be used instead to represent effect of salt on superstructure components. 

The second covariate listed in Table 21 is the maximum span length. The effect of this covariate is listed 

for 10 ft. increase for the maximum span length and all other covariates being equal i.e., located in the same 

districts, being the same superstructure type, and having identical age in TICR. For example, for each 10 

ft. increase in maximum span length for PSC continuous girders, the mean effect is increased by 1.06, or 

6%, and this effect is as low as 3% for some of the PSC superstructures and as high as 9% for others. 

Similarly, the mean effect of maximum span length on steel continuous girders is 1.03, or the hazard is 

increased by 3%. The confidence interval for this point estimate is 3% - 4%. The effect of maximum span 

length on RCC beams is not statistically significant as the confidence interval of 0.95 – 1.01 contains the 

value of 1. In other words, based on the available data for RCC superstructures’ TICR, the maximum span 

length is not a predictor of their performance. 

The third covariate listed in Table 21 is age in TICR. That is the age of superstructure recorded when the 

superstructure first transitioned to a new CR. Similar to the effect of maximum span length, the effect of 

age in TICR is calculated for 10 years of increase in this covariate for all other covariates being equal. The 

effect of this covariate could be interpreted in a similar manner as that for the maximum span length 

provided above. 

Table 22 shows the results of Cox regression analysis for superstructure types with the bridge age and 

maximum span length taken at mean values for the entire data set. These data can be used to compare the 

relative hazard of the different superstructure families without the influence of age or span length. As 

shown, if steel simple girders are compared to PSC continuous girders, the mean hazard for steel simple 

girders is 72% of the hazard for PSC continuous girders. The confidence interval for this estimate is as low 

as 64% for some superstructures and as high as 81% for others. These data can be used to rank the hazard 

for different types of superstructures relative to other types. From this analysis, ranking the different 

superstructure types from least hazard (best performing) to greatest hazard as follows: RCC beams, RCC 

slabs, steel continuous girders, steel simple girders, PSC continuous girders, and finally PSC box beams. 

These data could also be interpreted for making a design choice - for example, for a single-span bridge, 
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where a PSC box girder might be selected, and steel girder bridge would have significantly better 

performance with only 66% of the hazard as compared with a PSC box girder. If PSC continuous were 

selected, the hazard would be 94% as compared with the box beam solution. (Note: simple span PSC girders 

are included in the PSC continuous group, because the number of simple spans was too small to analyze 

separately). The PSC superstructure type has limited data available for CR 5, 4, and 3. Since the Cox 

regression is fitted across all possible CRs, the sparsity of data in the lower CR may influence these results.   

Table 22. Comparison of superstructure type at mean age in TICR and mean maximum span 
length.  

Superstructure types comparison Point estimate 95% confidence interval 
RCC slabs RCC beams 1.08 0.99 1.18 
RCC slabs Steel simple girders 0.82 0.75 0.91 
RCC slabs Steel cont. girders 0.87 0.80 0.95 
RCC slabs PSC cont. girders 0.59 0.52 0.67 
RCC slabs PSC box beams 0.54 0.46 0.65 

RCC beams Steel simple girders 0.76 0.70 0.83 
RCC beams Steel cont. girders 0.80 0.75 0.86 
RCC beams PSC cont. girders 0.55 0.48 0.62 
RCC beams PSC box beams 0.50 0.43 0.59 

Steel simple girders Steel cont. girders 1.05 0.98 1.12 
Steel simple girders PSC cont. girders 0.72 0.64 0.81 
Steel simple girders PSC box beams 0.66 0.56 0.78 
Steel cont. girders PSC cont. girders 0.68 0.61 0.76 
Steel cont. girders PSC box beams 0.63 0.53 0.73 
PSC cont. girders PSC box beams 0.94 0.78 1.14 

The effect of span length on the deterioration of a structure is of interest for design engineers, so to illustrate 

how the increase in hazard manifests for actual span lengths, a model is provided looking at two different 

materials that are common for modern construction in Missouri and how the span length effect would 

impact deterioration. Figure 15 shows the deterioration pattern for PSC and steel continuous superstructures 

in CR 6. The horizontal axis is the TICR, and the vertical axis is the reliability, or the likelihood that the 

superstructure would not transition in the next time interval. The effect of different span length ranging 

from 80 to 120 ft. is shown. As illustrated in the figure, the increase in hazard results in a decrease in the 

time to transition from CR 6 to CR 5. For example, just looking at the median value, for a steel continuous 

girder with a span length of 80 ft., the median (50%) value is about 15 years, but if the span length was 120 

ft., the median value would be about 13 years before transitioning.  
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Figure 15. Effect of span length on deterioration of steel and PSC continuous superstructures. 

Reliability Analysis for Substructures 

This section contains the deterioration curves and the investigation of the covariates affecting the 

deterioration of substructures. The substructures data set encompasses substructures for all bridges with 

any type of superstructure. Table 23 shows the number of substructures in each CR and total number of 

substructures included in the analysis. For substructure components, the NBI data does not include the 

materials that the substructure is formed from, so the analysis of substructures includes all materials and 

designs in one population.  

Table 23. Table showing counts of substructures for each CR and as a total. 

Bridge component  Numbers of substructures in each CR 
3 4 5 6 7 8 

Substructures 238 955 2579 5217 5411 6125 
Total number of substructures  8872 

Before investigating the effect of the covariates on the deterioration of the substructures, the data set is 

analyzed using the K-M method to determine the reliability and deterioration pattern for substructures using 

the NBI CR. The smoothed reliability graph based on the K-M method is shown in Figure 16. As shown, 

substructures in CR 6 and 7 have the highest reliability and therefore remain longer in these CRs and 
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substructures in CR 3 and 4 have the lowest reliability and hence remain in a given CR for a shorter amount 

of time.   

The reliability graph could be used to understand the performance of the substructures based on the NBI 

CR data. For example, the probability for substructures to stay more than 12 years in CR 7 is 50%. Similarly, 

the probability for substructures in CR 3 to stay in CR 3 more than five years is only about 30%, or a 1 in 

3 chance of staying in CR 3 more than five years. Similar readings could made for other CRs. 

 

 

Figure 16. K-M graphs showing the reliability curves for substructures. 

The reliability graph was used to construct the service life graph for substructures based on median TICR 

value, or the 50% reliability. Such a graph for substructures based on the median TICR is shown in Figure 

17. As shown, the service life of substructures based on median reliability is 49 years. The service life graph 

is supplemented with the 25th and 75th percentile data to illustrate the range of results.   
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Figure 17. Graph showing the service life based on median reliability for substructures in CR 3 – 8. 

The reliability graph could be used to construct the cumulative hazard as well. The cumulative hazard, the 

integral of the hazard substructures are exposed to from the TICR zero (putting the bridge into service) to 

any selected TICR is a “counting process” way of looking at hazard for substructures [12]. The cumulative 

hazard for substructures is shown in Figure 18. The graph for substructures in CR 3 has the steepest slope 

compared to all other CRs, and hence substructures in CR 3 experiences about five times the hazard in 15 

years (TICR=15). Similarly, substructures in CR 6 and 7 have the shallowest slope, and for example, 

substructures in CR 7 accumulate hazard over four times during the whole-time span of data available for 

analysis (TICR =37). The cumulative hazard graphs provide another way of looking at the performance of 

the substructure in each CR. 
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Figure 18. Graph showing the cumulative hazard for substructures. 

Cox Regression Analysis for Substructures  

The effect of covariates on the performance of substructures was investigated using the Cox regression and 

is presented in the following paragraphs. For building the Cox regression models the procedures described 

in the modeling section were followed. 

The final Cox regression model for substructures after investigating the influential observations and outliers 

are shown in Appendix A. The statistically significant covariates are age in TICR, salt, district, structure 

length, whether a bridge is located on waterway or not, and interaction of district with salt.  

The effect of salt on the deterioration of substructure components was very pronounced, as shown in Table 

24. The average point estimate was 6.52, indicating a very significant effect of salt application. The effect 

of salt in each district is also listed in the table. As shown, the effect of salt in the Southwest District 

appeared to be an anomaly, calculated at a value of 22.5. Considering that this may be an anomaly, or there 

may be other factors not considered in the model, the average point estimate calculated without the 

Southwest data is also shown, only 3.85. This value is still relatively large as compared with hazard ratios 

for other covariates. Regardless, the trend of the data shows that substructures are significantly impacted 

by the salt applied to the roadway, and this effect appears to be more pronounced for the substructure (say 

~3.85) as compared with the deck or superstructure (2.13 and 2.58, respectively).  
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It was found that the length of the superstructure on the given substructure has a statistically significant 

effect on the hazard for substructure, although the effect is small. The data indicated the increase in hazard 

was between 0.7% and 1.3% per 100 ft. of additional span length. The age of the substructure also had a 

statistically significant effect, about 6% increase in hazard for every 10 years of age.  

It was also found that substructures for bridges over waterways had greater hazard than substructures for 

bridges not over waterways. In Table C-14 in the appendix, the covariate waterway is shown as a categorical 

covariate comparing the reliability of substructure for a bridge located on a waterway to those that are not 

located on a waterway. The reference level is substructures not located on a waterway and the parameter 

estimate for substructures located on a waterway is 0.105 relative to substructures not located on a 

waterway. The hazard ratio for these two categories of substructures is e0.105=1.11, or substructures located 

on a waterway has 11% more hazard of deteriorating to lower CRs than those not located on a waterway. 

Inverting the hazard ratio shows that substructures not located on a waterway has 90% of the hazard of 

substructures located on a waterway.  

Table 24. Table showing the effect of covariates on substructures. 

Covariate name Point 
estimate 

95% confidence 
interval 

Average 
point 

estimate 

Salt (one tons/lane 
miles) 

NE 2.48 2.06 3.00 

6.52 / 3.85 

NW 7.40 5.31 10.32 
KC 2.21 1.75 2.80 
CD 6.68 5.14 8.68 
SL 1.82 1.67 1.98 
SE 2.48 1.27 4.85 
SW 22.6 17.55 29.12 

Structure length (100 ft.) 1.01 1.007 1.013 1.01 
Age in TICR (10 years) 1.06 1.05 1.07 1.06 

Bridges not on a waterway vs. on a waterway  0.90 0.87 0.94 0.90 

Table 25 shows the results of the Cox regression analysis comparing the performance of substructures in 

different districts assuming a salt distribution of 1 ton per lane mile.  In some cases, the results from the 

Cox regression analysis show very significant differences, such as the ratio for the SE district as compared 

with the SW district, which show almost 25 times the hazard.  Several of the comparisons resulted in hazard 

ratios that were not significant.  
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Table 25.  Cox regression results showing hazard ratios for substructures in different districts.  

Comparison of districts at salt = 1 tons/lane miles 
Comparison  Point estimate 95% confidence interval 

CD KC 0.65 0.27 1.54 
CD NE 0.28 0.16 0.50 
CD NW 1.65 0.80 3.37 
CD SE 0.07 0.04 0.11 
CD SL 0.41 0.24 0.72 
CD SW 1.76 1.05 2.95 
KC NE 0.44 0.19 1.02 
KC NW 2.54 0.98 6.58 
KC SE 0.11 0.05 0.24 
KC SL 0.64 0.28 1.48 
KC SW 2.72 1.21 6.13 
NE NW 5.79 2.94 11.4 
NE SE 0.25 0.17 0.37 
NE SL 1.46 0.88 2.41 
NE SW 6.20 3.89 9.88 
NW SE 0.04 0.02 0.08 
NW SL 0.25 0.13 0.49 
NW SW 1.07 0.56 2.04 
SE SL 5.82 3.93 8.63 
SE SW 24.79 17.63 34.86 
SL SW 4.26 2.69 6.74 

Reliability Analysis for Culverts 

This section of the report describes the reliability analysis for reinforced concrete culverts. There are more 

than 3,300 culverts in the NBI inventory for Missouri, as shown in Table 26. The vast majority of these 

culverts (~98%) were constructed of reinforced concrete and fit the coding guide descriptions for concrete 

continues culverts. Other culvert types were too small in number to support a statistical analysis of their 

deterioration patterns. As a result, analysis was only completed for concrete continuous culverts.  

Table 26. Table showing the number of different types of culverts in the inventory. 

SI&A items SI&A in words Number of culverts 43A 43B 
2 19 Concrete continuous culvert 3,288 
3 19 Steel culverts 33 
4 19 Steel continuous culvert 4 
8 19 Masonry culvert 9 
0 19 Other culvert 1 

Total number of culverts 3,335 
Count of concrete continuous culverts after data preparation (trimming) 

 Count of culverts in each CR 
CR 3 4 5 6 7 8 

Concrete continuous culvert 19 132 705 2,387 2,590 1,854 
Total count of culverts after trimming 3,262 

The count of concrete continuous culverts for each CR, and as a whole, is provided in the bottom part of 

Table 26. Twenty-six concrete culverts were eliminated during the data trimming process because these 

culverts had inadequate data for analysis, either because the culvert was relatively new, there was a 
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numbering error that couldn’t be resolved, or the trimming of the data resulted in the culvert not providing 

adequate historical data for analysis. From the total count of 3,262 culverts, 3,067 are filled culverts and 

195 culverts do not have fill, meaning the top flange of the culvert is directly exposed to traffic loading and 

the application of deicing chemicals. These 195 culverts have a deck type indicated for the NBI database 

coding item for deck structure type (Item 107), whereas the vast majority of culverts are filled, and item 

107 is entered as “N” or “not applicable.” Due to a small number of culverts without fill, comparison 

between these two types of culverts was not possible and all reinforced concrete culverts were treated as 

one uniform group.  

This section of the report provided the analysis for reinforced continuous concrete culverts. First, the 

reliability or survival is shown using the K-M analysis based on the NBI CR data, and then the effect of 

covariates is shown for the reliability of culverts.  

The survival, or reliability curve, for concrete continuous culverts constructed using the K-M method is 

shown in Figure 19 for CR 3 - 8. As shown, culverts stay the longest in CR 6 and stay the shortest in CR 3. 

Also, it should be noted that the number of culverts in CR 3 is 19 as shown in Table 26 and the reliability 

curve may not be as accurate as those plotted for other CRs. The plot for CR 8 shows that initially culverts 

in CR 8 remain longer than all other CRs, but as the TICR is getting longer, culverts drop from CR 8 at a 

faster pace as demonstrated by the steep reliability curve for this CR. This graph could be used to assess 

the performance of the culverts in each CR. For example, the probability for culverts in CR 6 to stay in this 

CR more than 20 years is over 50%. Similarly, the probability for culverts in CR 3 to stay in this CR for 

more than 10 years is less than 10%. Similar reading could be made for other CRs. 
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Figure 19. Graph showing the reliability curve for culverts using the K_M method. 

The reliability curve in Figure 19 can be used to calculate the service life for culverts, the time frame it 

takes culverts to deteriorate from CR 8 to CR 3. For example, the service life for median or 50% of the 

culverts is shown in Figure 20. As shown, this graph indicates that the service life for culverts is 59 years, 

seven years longer than the service life of CIP decks. The service life graph is supplemented with the 25th 

and 75th percentile curves to illustrate the distribution of the results.  
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Figure 20. Graph showing the time span (service life) for culverts stay in CR 3 – 8 based on median 
reliability. 

Cox Regression Analysis for Culverts 

The effect of the covariates on the reliability or survival of the culverts are investigated using the Cox 

regression and presented in the following paragraphs. Before beginning the statistical analysis of the effect 

of covariates on deterioration of the culverts, general information about the covariates is provided in the 

upper part of Table C-17 of the appendix, and the distribution of the concrete continuous culverts within 

each district is shown in the lower part of Table C-17. The covariates considered for data analysis of 

concrete continuous culverts are structure length (ft.), maximum span length (ft.), amount of salt used for 

deicing purposes (tons/lane miles), freeze-thaw cycles (days/year), snow (days/year), ADT, ADTT, and 

district.  

Table C-18 in the appendix shows the result of the Cox regression analysis for concrete continuous culverts 

for each of the covariates individually, and the result is compared with the null model, no covariates in the 

model. This initial analysis shows whether a covariate is statistically significant individually. A non-

significant covariate may become significant in the presence of other covariates when all covariates are 

included in the model, and this was also assessed. The model building procedure described in the model 

development section is followed to build the Cox regression model for concrete continuous culverts. 



   

65 

The final output for Cox regression model for concrete continuous culverts is shown in Table 27. The 

parameter estimates were used to calculate the hazard ratios for all covariates listed in this table, as shown. 

Table 27 indicates the effect of the application of an additional 1 ton of salt per lane mile of roadway with 

results presented for each district and the average point estimate across all districts. These data indicate the 

significant effect of increasing the amount of salt applied to the roadway on the deterioration of culverts 

along that roadway. The increased hazard for culverts is somewhat surprising given that the vast majority 

of culverts are filled culverts and therefore separated from the roadway by some depth of soil. The increased 

hazard of 76% is smaller than other components such as the deck (2.13), superstructure (2.58), and 

substructure (3.85), but still larger than other covariates expected to affect the deterioration pattern.  

Other covariate effects on the hazard ratios reported in Table 27 include increasing the structure length by 

10 ft., the age of the structure, and the effect of 10 additional days of snow. Of these, the effect of 10 

additional snow days had the largest effect of a 13% increase in the hazard.  

The comparison of hazard ratios between different districts at a mean value of salt application of 2.54 tons 

per lane mile is also shown in the table. These data indicate the relative increase in hazard between different 

districts. For example, the hazard for transitioning to the next lower CR for a culvert in the NE District as 

compared to the Central District is about 2, or twice the hazard based on the Cox regression analysis. Many 

of the district comparisons were found to not be statistically significant, and these are shaded in the table. 

For these district comparisons, the 95% confidence interval include 1.0, indicating that statistically the 

hazard could be the same between the two districts.  

Table 27. Table showing the hazard ratios for covariates investigated for culverts. 

Covariate name Point 
estimate 

95% confidence 
interval 

Average 
point 

estimate 

Salt (one ton/lane miles) 

NE 3.93 2.85 5.41 

1.76 

NW 2.38 0.97 5.85 
KC 1.91 0.92 3.97 
CD 1.79 1.07 3.01 
SL 1.55 1.19 2.04 
SE 0.26 0.07 0.91 
SW 0.51 0.32 0.80 

Structure length (10 ft.) 1.08 1.06 1.11 1.08 
Age in TICR (10 years) 1.03 1.02 1.04 1.03 

Snow (10 days) at mean salt 1.13 1.08 1.18 1.13 
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Table 28. Hazard ratios for culverts in different districts with 2.54 ton/lane mile of salt.  

Comparison  Point estimate 95% confidence interval 
CD KC 2.88 0.83 10.04 
CD NE 2.02 1.73 2.35 
CD NW 1.40 1.15 1.70 
CD SE 5.78 1.10 30.19 
CD SL 2.89 1.44 5.82 
CD SW 1.12 0.90 1.40 
KC NE 0.70 0.20 2.45 
KC NW 0.48 0.14 1.71 
KC SE 2.00 0.25 15.8 
KC SL 1.04 0.24 4.17 
KC SW 0.39 0.11 1.38 
NE NW 0.69 0.56 0.87 
NE SE 2.86 0.54 15.05 
NE SL 1.43 0.71 2.92 
NE SW 0.56 0.43 0.72 
NW SE 4.13 0.78 21.8 
NW SL 2.06 1.00 4.25 
NW SW 0.80 0.61 1.06 
SE SL 0.50 0.08 3.01 
SE SW 0.19 0.04 1.02 
SL SW 0.39 0.19 0.80 
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CONCLUSIONS 

Summary/Review 

Deterioration curves were developed based on K-M method of survival analysis. This methodology applies 

the NBI CR data collected over a time interval of 37 years to calculate the probability or likelihood of a 

bridge component or culvert to transition to the next lower CR. These data were then analyzed and median 

service life estimates were provided for the deck, superstructure, and substructure and the primary materials 

of steel, reinforced concrete, and prestressed concrete. Similar curves and service life estimates were 

produced for concrete culverts.  

Cox regression analysis was used to identify and quantify trends in the deterioration of different types of 

bridges MoDOT has built over the years. These data were analyzed to determine the influence of covariates, 

generally parameters that are believed to affect the deterioration patterns for bridges. The methodology for 

Cox regression analysis involved first determining if a given covariate or parameter has a statistically 

significant influence on the model. Covariates that showed a statistically significant influence on the model 

individually were used for further analyses that include the interaction of the covariates. Covariates that 

were not statistically significant when considered individually or in combination with other covariates were 

not considered in further analysis. The report illustrated this procedure for CIP decks, and provided raw 

data on the beta factors for the different covariates. For other components and culverts, the raw data was 

provided in the appendix. Hazard ratios were used to explore the influence of the statistically significant 

covariates on the deterioration patterns for bridges.  

The research illustrates trends and provides measures of the influence of different parameters for the 

deterioration of structures in Missouri. Based on the analysis, the following conclusion are made with 

respect to the initial objectives of the research.  

The quantity of salt application had the greatest impact on the deterioration of structures of any parameter 

studied. 

Working with MoDOT, the RT was able to assemble some quantitative data that described the rate of 

application of deicing chemical (salt) in different counties across the state. These data were limited such 

that assumptions based on the salt usage reported from individual sheds were made in the analysis. For 

example, these data were normalized to show the rate of salt application in tons/lane mile in each county, 

and subsequently in each MoDOT district. The assumption is that the normalized data provide a relative 

measure of the quantity of salt applied in a district. Although this is not a direct quantitative measure of the 

quantity of salt applied, it was still more information that has traditionally been available for this type of 
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deterioration modeling. It was found in the modeling that the rate of salt application affected all of the 

structures in the study, with increases in rate of salt application resulting in increased risk or likelihood of 

deterioration by a factor of 2 or more for bridge components. It would be expected that an increased rate in 

salt application would have a negative impact on the deterioration of bridge components, but quantifying 

the results in this way illuminated some interesting results. For example, the increase in hazard was slightly 

more for superstructures (2.58) than for decks (2.13), and largest among bridge components for 

substructures (3.85). Although an indirect measure, these results would suggest that the condition of bridge 

joints was critical since this is the primary source for water and deicing chemicals to come in contact with 

the superstructure and substructure of a bridge. Jointless bridges and deck drainage with scuppers that 

release drainage away from the superstructure, and the maintenance of drainage, would appear to be 

important factors for increasing the durability of bridges. Again, this is generally known, but quantitative 

analysis illustrating this effect based on the NBI data has not been previously available.  

The effect was that salt application was pronounced and significantly larger than any other factor. To the 

knowledge of the RT, this is the first time the rate of salt application has been quantitatively tied to the 

deterioration models and patterns in bridges, although many current projects in other states are working 

toward this goal.  

Effect of Structure Type 

• CIP decks formed on steel continuous superstructures had longer median service life estimate (54 

years) as compared with steel simple girders (50 years) and PSC continuous superstructures (44 

years). PSC box beams provided the shortest service life for CIP decks (38 years), while RCC slabs 

(59 years) provided the longest service life.  

• The primary modern superstructure types, including steel simple, steel continuous, and PSC 

continuous bridge types, had very similar deterioration patterns between CR 8 and CR 4. PSC box 

beam bridges had the shortest median service life, while RCC slab bridges had the longest service 

life. 

The structure type was studied in two different contexts. First, the effect of the structure type on the 

deterioration patterns for CIP bridge decks was studied to determine if the type of superstructure affected 

the service life or deterioration pattern for the deck. Second, the differences in the performance of different 

structure types in terms of service life and deterioration patterns was studied in an effort to determine which 

superstructure types provided the best durability.  

In terms of the interaction between the superstructure design and CIP deck deterioration, the analysis 

showed that RCC slabs showed the longest service life estimate, 59 years, and CIP decks on PSC box beams 
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had the shortest estimated service life at 38 years. It was also found that CIP decks on steel continuous 

superstructures had a longer service life (54 years) as compared with the average service life estimate of 52 

years, and CIP decks on continuous PSC girders had a shorter than average service life estimate of only 44 

years. As mentioned previously, the PSC continuous superstructure data is skewed toward bridges in good 

condition, with relatively few examples of CIP decks on PSC continuous superstructures in the fair to poor 

condition. Consequently, although these data are accurate according to the statistical modeling, these may 

not be fully representative of the performance of these decks looking toward the future. 

In terms of superstructure type, it was found that the primary modern-day bridges being constructed, 

including steel simple girders, steel continuous girders, and PSC continuous girders, all had very similar 

median service life estimates between CR 8 and CR 4. It was notable that most superstructure types showed 

a noticeable change in slope at CR 5, indicating an increase in deterioration rate once a superstructure was 

rated CR 5. The exception was PSC box beam superstructures, which had a high and constant deterioration 

rate from CR 7 through CR 3. See Figure 14. 

Age of the Structure and Era of Construction  

• The age of a component or culvert has a statistically significant effect on its reliability, resulting 

in increased likelihood of transition to the next lower CR of between 3 and 10% per 10 years of 

age.  

The age and era of construction for a given bridge component was studied through the use of Cox regression 

analysis. The age and the era of construction are actually correlated variables since a bridge from a given 

era of construction would also have age characteristics from that time interval. Therefore, it was beneficial 

to utilize the age in TICR values to assess the effects of age and through that there is some insight into the 

era of construction, even though the era itself was not identified.  

It was found that the age at which a bridge component enters a given CR has a statistically significant effect 

on the deterioration pattern for that component as measured by the increase in the hazard or hazard ratio. 

Table 29 shows the average point estimate for the covariate of age in TICR analyzed using Cox regression 

analysis. The results show the relative increase in hazard, or likelihood of transitioning to next lower CR, 

taken as the average hazard ratio. For this analysis, other covariates such as span length, salt application, 

etc. are held constant and just the effect of the age of the component when it transitioned to a given CR is 

considered. These data indicate the trend of the age of a bridge component (or culvert) increase of 10 years 

results in about a 10% increase in relative hazard, as compared to the same component with 10 fewer years 

in service. In summary, the older the component is, the shorter the TICRs interval will be, i.e., the faster 
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the component will deteriorate. It was found that this effect was less but still statistically significant for 

substructures and culverts. 

Table 29. Summary of hazard ratios for age in TICR for bridge components and culverts.  
Component Average hazard ratio (point 

estimate) 
Age in TICR 

CIP decks on different types of 
superstructures 

1.10 

Superstructures 1.11 
Substructures 1.06 

Culverts 1.03 

Span Length  

• Span length has a small but measurable (statistically significant) effect on the deterioration of 

structures. 

Two correlated covariates were considered to assess the effect of span length – the overall structure length 

and the span length. The span length was studied for CIP decks and superstructures of different materials, 

and the overall structure length was studied for substructures and culverts. It was shown that there is a small 

but statistically significant increase in the hazard ratio as span or structure length increased. This effect was 

most pronounced for the superstructure designs of different materials and design types. As shown in Table 

30, there was approximately a 5% increase in hazard for each additional 10 ft. of maximum span length for 

superstructures.  

Table 30. Summary of hazard ratios for different components and culverts for the covariate of span 
or structure length increase.  

Component Covariate 
(ft.) 

Average hazard ratio 
(point estimate) 

CIP decks on different types of 
superstructures 

Span, 10 ft.  1.03 

Superstructures Span, 10 ft. 1.05 
Substructures Length, 100 ft. 1.01 

Culverts Length, 10 ft. 1.03 

These data can be interpreted that the deterioration of a bridge or culvert increases as the length (either 

maximum span length for superstructures or deck, or overall structure length for substructures and culverts) 

increases.  

Among superstructures of different design types, it was found that slab bridges and RCC superstructures 

were least affected by the span length covariate, although these types of bridges have other design 

limitations on maximum span length, and therefore are typically shorter bridges. For longer spans, it was 

found span length had a smaller influence on both steel continuous and simple bridges as compared with 

PSC bridges, and PSC box beams were found to be most affected by increasing span length.  
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Condition Assessment  

• In almost all cases, the deterioration rate of structures as measured by median service life graphs 

had an increase in slope at CR 5, meaning that once a bridge is rated in CR 5, the deterioration 

rate is increased. 

Most of the data and results described in this report are associated with the condition assessment of 

structures through the CRs that were analyzed. The CRs were analyzed to calculate the TICR values and 

overall median life estimates for different components of a bridge and for culverts. These data are 

summarized in Table 31, Table 32, and Table 33 that show the TICR and median service life for the different 

bridge components and culverts studied through the research. It was found that RCC slabs and RCC beam 

bridges showed longer median service life estimates as compared with other bridge types. This may be due 

in part to the applications for bridges of this design – the RCC components would generally be of shorter 

span and likely on relatively lower ADT and ADTT routes. Among the most common contemporary bridge 

types, it was found that steel simple superstructure bridges had slightly longer overall estimated service 

lives as compared with PSC superstructures. It was found that PSC box girder bridges had poor deterioration 

characteristics – not only shorter estimated service life for PSC box superstructures, but also poor 

performance of decks formed on PSC box beams. A caveat is that both PSC continuous superstructures and 

PSC box girder bridges are relatively modern bridges and the data on the deterioration in the poor condition 

(i.e., CR 4 and 3) is more limited as compared with more traditional bridge types. As a result, although 

these data and the analysis of the data showed a statistically significant difference in the age and TICR 

behavior, this result may be influenced by the lack of uniform data across all bridge types and CR values. 

Regardless, these data are accurate representations from the available data on the performance of bridges 

and culverts and passed statistical tests.  

It should be noted that the values for TICR for CR 4 and CR 3 are generally smaller than for CR 5, 6, or 7. 

These data illustrate the increasing rate of deterioration once a structure has dropped to the CR 5 level. A 

caveat for this conclusion is that repairs may occur when bridges are in CR 4 and CR 3, and that may result 

in an apparently shorter TICR, but transitioning due to repair rather than further deterioration.  
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Table 31. Summary of TICRs, median estimated service life, and good repair life for CIP bridge 
decks.   

Component 
Median TICR (year) for CR 8-3 Service 

life 
Good repair 

life1 8 7 6 5 4 3 
All CIP decks regardless of the superstructure  7 11 14 8 5 7 52 32 

CIP decks on different superstructure types  
RCC slabs 7 14 17 8 6 7 59 38 

CIP decks on steel cont. girders 7 13 16 7 5 6 54 36 
CIP decks on steel simple girders 7 9 14 8 5 7 50 30 

CIP decks on RCC girders 2 9 14 10 6 8 49 25 
CIP decks on PSC cont. girders 8 14 9 5 32 52 44 31 
CIP decks on PSC box beams 5 9 7 8 72 22 38 21 

1 “Good repair life” shows time interval for CR 8, 7, and 6 
2 Data in this CR is very limited. 

 
Table 32. Summary of TICRs, median estimated service life, and good repair life for different types 
of superstructures.  

Superstructure type 
Median TICR (year) for CR 8-3 

Service life 
Good repair 

life1 8 7 6 5 4 3 
RCC slab 7 14 18 8 6 8 61 39 

RCC beam 5 9 14 10 6 8 52 28 
Steel simple 9 9 13 8 5 5 49 31 

PSC continuous 7 15 13 5 32 52 48 35 
Steel continuous girder 9 16 8 5 3 3 44 33 

PSC box 4 8 7 9 102 32 41 19 
1 “Good repair life” shows time interval for CR 8, 7, and 6 

2 Data in this CR is very limited. 

 
Table 33. Summary of TICRs, median estimated service life, and good repair life for different 
substructures and culverts. 

Component  
Median TICR (year) for CR 8-3 

Service life 
Good repair 

life1 8 7 6 5 4 3 
Substructure 9 12 12 9 5 2 49 33 

Culvert 9 9 20 12 6 32 59 38 
1 “Good repair life” shows time interval for CR 8, 7, and 6 

2 Data in this CR is very limited. 

Table 31, Table 32, and Table 33 also have a column labeled “good repair life.” This column represents the 

sum of the median TICR values for CR 8, 7, and 6. In this range of CR, the components are in the 

satisfactory to good condition ranges, and it is in this time interval where maintenance and preservation 

would be most effective to delay the increase in deterioration commonly found for bridges once CR 5 is 

assigned. This effect can be observed in the various service life plots provided in the report (e.g., Figure 9), 

which shows a change in the slope of the service life graph once the components have been assigned the 

CR of 5. The rate of deterioration tends to increase as damage accumulates and the CR of 5 is assigned, 

with TICR values in CR 5, 4, and 3 generally being shorter than for CR 8, 7, and 6. Therefore, preserving 

a bridge in CR 8, 7, or 6 will have the benefit of extending TICR values and avoiding the accumulation of 
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damage that leads to CR 5, 4, or 3. In other words, “good repair life” can be used to target preservation and 

maintenance activities as part of an effective bridge management strategy.  

Material Type  

• The research showed that structures formed from RCC, such as slab, RCC beam bridge, and 

culverts had the longest median service life estimates. PSC box girder bridges had the shortest 

estimated median service life.  

The type of materials from which the bridge component or culvert was formed was studied as part of the 

research. For culverts, the vast majority of culverts in Missouri are formed from reinforced concrete, and 

there was not sufficient data available to study other materials for culverts. For superstructure types, the 

materials and design types were grouped into six superstructure types with sufficient data for meaningful 

statistical analysis.  

As mentioned previously, it was found that components formed from RCC generally had longer median 

service lives as compared with other superstructure types. For superstructure components, RCC slabs and 

RCC beam bridges had the longest median service lives. PSC box beam bridges had the shortest median 

service life. For CIP decks, RCC slab bridges had the longest median service life for their decks, and PSC 

box beam bridges had the shortest CIP service life among any of the different types.  

Traffic Volume 

• The data showed that ADT and ADTT did not have a statistically significant effect on the reliability 
of structures. 

The study showed that the ADT and the ADTT were not statistically significant factors in the deterioration 

patterns for bridges. This result was unexpected, because experience would indicate that the volume of 

truck traffic (ADTT) would have a significant effect. It should be noted that not having a statistically 

significant effect is not the same as not having any effect, it only means that the data did not support a 

conclusive statistical measure of the effect. It may be that the effect is more pronounced as damage 

accumulates and CR is reduced to a 5 or a 4. The statistical measures that were used assess the influence or 

correlation with damage across all of the CRs, not just 5 and 4, and it may be that this results in the outcome 

that the effect is not statistically significant when considered across all CRs between 8 and 3. Additionally, 

bridges on higher volume routes may experience additional maintenance and preservation as compared with 

lower volume routes, mitigating the effect of the increased volume, or may have more durable design or 

higher quality of construction. These potential factors in the outcome of effect of ADT/ADTT are only 

conjecture. Additional analysis focused on this topic specifically may be needed to recognize the reason 

that the statistical modeling does not agree with common experience in this case.   
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Location and Environmental Exposure  

• The rate of application of deicing chemical had the largest influence on the deterioration 
patterns for structures as compared with other parameters studied, roughly twice the impact 
of any other factor. 

• Bridge decks perform differently in different districts.   

The location and environmental exposure parameters were studied in the research in the form of the effect 

of the district where a structure was located, and the environmental factors that included the number of days 

of snow per year at the location of the structure, the number of freeze/thaw cycles, and an estimate of the 

amount of salt applied to the roadway in the district where the structure is located.  

It was found that the quantity of salt applied to the roadway had the most significant effect on the 

deterioration of structures. This was true for any material and any structure type. The average hazard ratios 

considering the covariate of salt application (1 ton/lane mile) are summarized in Table 34. As shown in the 

table, it was found that salt application had the greatest effect of any covariate on the deterioration of 

structures.  

Table 34. Summary of hazard ratios for the covariate of salt application for different structure 
types. 

Component Average hazard ratio 
(point estimate) 

Salt application (1 ton/lane mile) 
CIP decks on different types of 

superstructures 
2.13 

Superstructures 2.58 
Substructures 6.52/3.85 

Culverts 1.76 

It was also found the number of freeze/thaw cycles a structure experienced did not correlate with increased 

deterioration rates. In fact, the analysis indicated that as the number of freeze/thaw cycles increased, the 

hazard decreased. This is contrary to experience and expected behavior, and may indicate that there were 

other factors not considered in the analysis that affected the correlation of increased freeze/thaw cycles with 

increased deterioration rates.  

Data was also analyzed to assess performance of bridge decks in different districts across the state. Data 

showed the correlation between increased salt application in different districts and a corresponding increase 

in bridge deterioration (see Table 18). In most cases, it was found that increased levels of salt application 

between districts correlated with decreased median service life estimates. It was also found that the 

deterioration of bridge decks was affected by the district where the deck is located, when the salt application 

level was normalized to 1 ton/lane mile.  
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It was also found that the deterioration patterns for CIP bridge decks differed by district across the state. 

Reliability curves based on the K-M methods have been provided for each district for future use in 

Appendix E. These curves can be used to estimate the likelihood of transition to the next lower CR based 

on the years a component has been in its current CR, as described below.  

Methods for Implementing Research Results 

This section of the report discusses how the results of the research can be used for bridge management and 

decision-making. The overall results from the research provide data on the deterioration of different 

structures including bridge components of superstructure, substructure and deck, and culverts. These results 

can be used for the development of asset management plans in terms of identifying future repair and 

replacement needs on the overall bridge population or for specific sectors of the bridge population. This 

section of the report describes three ways in which the K-M modeling results can be used. First, a method 

of using linear deterioration curves for simple calculations and predictions is discussed, followed by ways 

in which an engineer could use the reliability curves and service life curves for decision-making. Third, 

using the results of the research for prospective deterioration modeling with a Markov model is shown. 

Finally, use of the results from the Cox regression analysis is described.   

The rate of deterioration can be expressed simply by examining the typical median service life graphs. 

These data were developed from the actual inspection records as the K-M methodology provides the 

likelihood of survival within a given CR on a per year basis based on those results. To characterize the 

deterioration of structures in a general sense, the K-M service life plots were used to calculate a single rate 

of deterioration between CR 7 to CR 5 and from CR 5 to CR 3. In this way, the general deterioration trend 

is expressed in a simple number. For this analysis, the service life plots based on median TICR were used 

to determine a single slope from CR 7 to CR 5 using linear regression, and a second slope was determined 

for CR 5 to CR 3, also using linear regression. The correlation coefficients for the regressed lines (R2) were 

typically 0.98 or greater, with the exception being for RCC culverts at a little over 0.95. The results of this 

analysis are shown in Table 35, Table 36, and Table 37, which tabulate the slope values for the bifurcated 

line. This provides a simple “rule of thumb” value for the median rate of deterioration that can be used for 

decision-making and is simple to apply to large spreadsheets or other data analysis scenarios. Generally, 

the rule of thumb for structures in CR 7-5 is deterioration occurs at ~8% per year, except for PSC box 

beams, which deteriorate at ~13% per year. A deterioration rate of ~8% per year corresponds to a TICR 

value of ~12.5 years.  Once CR 5 is reached, deterioration accelerates to ~15% per year, or a TICR of about 

6.6 years.  
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Table 35.  Deterioration rates for different superstructure types. 

Structure type 
Deterioration rate 

(%/year) 
CR 7-5 CR 5-3 

Steel cont. girder 8.0 24.5 
Steel simple girder  9.0 15.1 
PSC cont. girder 7.1 24.5 

RCC slabs 6.2 14.2 
RCC girders 8.6 12.2 

PSC box beam 13.3 10.5 
 

Table 36.  Deterioration rates for CIP decks on different superstructure types. 

Structure type 
Deterioration rate 

(%/year) 
CR 7-5 CR 5-3 

CIP decks 8.0 15.1 
CIP deck on steel cont. girders 6.9 16.5 

CIP deck on steel simple girders 8.6 15.1 
CIP deck on PSC cont. girders 8.6 24.5 

RCC slabs 6.4 14.2 
CIP decks on RCC girders 8.6 12.2 

CIP decks on PSC box beams 12.4 13.3 
 

Table 37. Deterioration rates for substructures and culverts. 

Structure type 
Deterioration rate 

(%/year) 
CR 7-5 CR 5-3 

Substructures 8.3 13.9 
Culverts 6.6 10.7 

These data can be visualized as shown in Figure 21, which shows the regressed slopes determined from the 

service life plots for typical superstructures (Figure 21A) and for CIP decks, substructures, and culverts 

(Figure 21B). These plots present a visualization of the values presented in the tables that make it easier to 

compare the results between different components. The linearized curves, each with one slope for CR 7 to 

CR 5 and a second slope for CR 5 to CR 3, can be used for generalized data analysis and planning for future 

funding needs.   
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Figure 21.  Linear deterioration curves for structures in Missouri showing A) typical 
superstructure types and B) CIP decks, substructures, and culverts. 

The service life and reliability plots can also be used for predictions for specific bridges or families of 

bridges, based on the K-M analysis. For example, the following section illustrates how the reliability curves 

can be used to forecast future performance for a component. These could be used by district engineers to 

predict future funding and repair needs across the inventory of bridges in their districts.  

Consider Figure 22A, which shows the reliability plot for CIP decks in the St. Louis District. The vertical 

axis is the reliability, or the likelihood that a component would NOT transition in a given year. For example, 

suppose an engineer had a CIP deck that had been in CR 7 for 10 years and wanted to know the likelihood 

of that deck transitioning to CR 6 in the next inspection cycle. On Figure 22A, extend a line from 10 years 

on the horizontal axis until it intersects with the reliability curve for CR 7. Then extend a line to the vertical 

axis – the data shows ~60% chance that the deck would not transition in the next year. In other words, there 

is approximately a 2/5 chance of the deck transitioning in the next year. Projecting for the next five years, 

extending a line from 15 years on the horizontal axis, shows that there is about a 40% chance that the deck 
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has not transitioned to the CR 6 based on the historic performance. In other words, there is a 3/5 chance 

that a deck in CR 7 will transition to CR 6 after 15 years.    

For Figure 22 B, showing the median service life estimate, consider the following example. An engineer 

has a deck that has just transitioned to CR 6, and they want to know how long it will be before the deck 

transitions to CR 4, poor condition. Extending a line from the vertical axis at CR 6, and intersecting with 

the median service life plot, extend a vertical line to the horizontal axis, where the median life estimate in 

just less than 20 years. Extending a second horizontal line from the vertical axis but now at CR 4, the 

median life estimate is about 38 years. Therefore, the median life expectancy from the current CR of 6 to 

CR 4 would take about 18 years. That is a median value, meaning that 50% of the CIP decks would 

transition in a shorter time and 50% would transition in a longer period of time. These data are useful for 

estimating and planning future work.  

 

Figure 22. Plot showing CIP deck reliability (A) and estimated median service life (B).  

The results of the research could also be used to build prospective deterioration models like those used in 

the AASHTO bridge management software. This software, and many other bridge management software 

packages, utilize Markov deterioration curves to predict future performance of bridge components. A 

significant difference between Markov deterioration curves and the K-M methodology used in this research 

is that Markov models are predictive (prospective), whereas the K-M survival analysis is retrospective. 

However, these two approaches can be used in a complimentary fashion. The Markov chain deterioration 

model is built using bridges’ initial condition vector (CV) and the transition probability matrix (TPM) as 

shown below. 

 CV n
Future = CVInitial ⋅TPM  (7) 
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The CVinitial is the current proportion of the bridge components in each CR as shown in equation 8:  
 CVInitial = (%8 %7 %6 5% %4 3% )  (8) 

And the TPM is an n x n (square) matrix in which each element is either the probability of staying in a CR 

or the probability of transitioning to other CRs as shown in the matrix shown below: 

 P P8,8 8,7 P8,6 P8,5 P8,4 P8,3
 P P7, P7,6 P7,5 P7,4 P 8 7,7 7,3

  P P P P P P  (9) 
TPM =  6,8 6,7 6,6 6,5 6,4 6,3

 P P5,8 5,7 P5,6 P5,5 P5,4 P5,3

 P P4 8 4,7 P4,6 P
 , 4,5 P4,4 P4,3

 
 P P3,8 3,7 P3,6 P3,5 P3,4 P3,3

The TPM elements along the diagonal are the probabilities of staying in that CR, and the elements with 

different subscripts (e.g., P7,6
) show the probability of transitioning from one CR to another. For example, 

P8,4
is the probability of transitioning from CR 8 to CR 4. 

The TPM power n is the number of inspection cycles desired to predict the future CRs of the bridge family. 

The TPM could be determined either by using the K-M reliability and deterioration graphs or plugging the 

median TICR from the K-M reliability graphs for each CR to the Pontis equation - P 0.51/T
Stay = , where T 

is the median TICR for each CR.  

The median TICR for Missouri decks is provided in the matrix shown below and the probability of 

transitioning to the lower CR is 1− Pstay :  

 0.906 0.094 0 0 0 0
 

 0 0.939 0.061 0 0 0   (10)  
 0 0 0.952 0.048 0 0

TPM Median _TICR =  
 0 0 0 0.917 0.083 0
 0 0 0 0 0.871 0.129
  
 0 0 0 0 0 1

As an illustration, data for the current distribution of CIP decks in Missouri is shown as the initial 

distribution in Table 38. As shown in the table, the current distribution of CIP deck condition in Missouri 

shows there are 11.3% in CR 8, 39.3% in CR 7, and so on. The TPM matrix (8) was used in equation (5) to 

calculate the distribution in 10 years (n = 5 inspection cycles) based on the initial distribution of CIP bridge 

deck conditions. These data show that initially there was 4.1% of CIP decks in CR 3, and in 10 years that 

number would be expected to increase to 8.1% (without repair). Decks in CR 4 would increase from 5.4% 

to 7.1%, again assuming no repair during the 10-year interval. The anticipated rate of repair could also be 
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integrated into the model, although this was not shown here for simplicity. In this way, future needs for 

repair and rehabilitation can be forecast with a relatively simple model that can be implemented with 

commonly available software. 

Table 38.  Example data for using a Markov model to predict future bridge deck conditions.  
Case CR 8 (%) CR 7 (%) CR 6 (%) CR 5 (%) CR 4 (%) CR 3 (%) 

Initial distribution  11.3 39.3 26.9 13.2 5.4 4.1 
Distribution in 10 years 6.9 32.5 31.1 14.5 7.1 8.1 

The Markov model has a number of limitations. It is based on a power law that results in a deterioration 

forecast that assumes more rapid deterioration initially with a decreasing rate, which, as shown in this 

research, is actually the opposite of the observed behavior of structures historically. Also, the Markov 

approach does not consider the age of a structure or the number of years a structure may have already been 

in a given CR. For example, a component that just transitioned to CR 6 is considered to have the same 

probability of transitioning to a CR of 5 in a given inspection cycle as a component that has been in CR 6 

for 10 years. Regardless, this is a common method of forecasting future deterioration trends and could be 

used to implement the results of the research. The quality of the models would be improved through the use 

of the results of the research in terms of calculating transition probabilities directly from the K-M reliability 

curves, either by using the median TICR values or using the transition probabilities directly. If using the 

transition probabilities directly, the user would have to select a value to use. 

The results from the Cox regression analysis are more complicated to implement for practicing engineers.  

Curves like those shown in Figure 11 and Figure 15 show the hazard ratios developed through Cox 

regression applied to the K-M modeling results. These data show the deterioration over time for one 

covariate value as compared to another, based on the hazard calculated through Cox regression. The 

development of these types of curves could be used to quantify the anticipated deterioration patterns for 

one value of covariates as compared to another, such as shown in Figure 15 that illustrates the effect of 

different span lengths. These data could also be used to illustrate the effect of changing policies such as the 

rate of salt application, as shown in Figure 11. However, these curves are not simple to form and generally 

require the use of specialized software, and several steps are needed to develop the curve.   

The Cox regression data could also be used more qualitatively to improve the quality of future predictions 

by modifying the deterioration rates such as those shown in Figure 21, modifying the K-M reliability curves, 

or modifying the transition probabilities used for a Markov model. For example, the Cox regression showed 

that the effect of salt had an average hazard ratio of 2.13.  This means that at any point in time, the likelihood 

of transitioning to the next lower CR is twice as large for a structure with one ton of salt per mile more than 

another structure. Given that the fundamental data from which the salt application rates were found have 

some limitations, this result could be used qualitatively to simply increase the deterioration rate for 
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structures where salt use is high as compared to other areas. For example, those districts in the northern part 

of the state should use an increased deterioration rate as compared with those in lower salt-use areas. Other 

covariates had smaller effects but could be used in a similar manner, where the Cox regression results are 

used to provide a relative weight or importance to a certain covariate and used to modify the existing 

deterioration curves qualitatively. Attributes like those used for risk models such as ADT, materials, 

superstructure type, span length, etc. can be characterized qualitatively using the Cox regression results to 

guide the weight given to each attribute. In this way, the estimate could be improved in a rational way using 

the risk model developed for Risk-Based Inspection (RBI) and to estimate the appropriate weights to give 

different attributes (i.e., covariates)[16].  

Results from the current study reported herein could also be used to determine if a specific bridge or family 

of similar bridges is likely to have a service life greater than or less than the median value. The relative 

influence of covariates such as the effect of span length, age in TICR, or number of snow days are reported 

and can be used to estimate future deterioration patterns. The most significant covariate found in the study 

was salt application; components exposed to relatively high rates of salt application can be expected to have 

a shorter service life and therefore would transition sooner than the median value.  In this way, the Cox 

regression results can be used more practically for future predictions.   

Recommendations 

One of the objectives of the research was to provide recommendations for cost-effective bridge types 

identified through the research. The results of the research provided some insight into the past performance 

of different bridge types, but did not provide a clear preference for any one bridge type. For the primary 

bridge materials and types, including steel girders (simple and continuous spans), RCC beam bridges, and 

PSC continuous structures, the median service life between CR 8 and 4 were essentially the same (see 

Figure 14). PSC box beams had significantly shorter estimated median service life, and RCC slab had 

significantly longer estimated median service life. These data indicate that the primary bridge types 

currently being constructed in Missouri have had very similar past performance and deterioration patterns. 

However, the research did illustrate some tendencies for cost effective bridge types. The following 

recommendations are made based on the results of the research. 

Recommendation 1: Implement preservation strategies to maintain bridges in good condition. 

 Deterioration rates increase for CR 5 and lower. 

 Rate of salt application has the most significant impact on deterioration. 

The results of the K-M analysis to determine the TICR data and median service life estimates illustrated a 

change in the deterioration rate once a bridge reaches CR 5. This can be observed in the median service life 
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estimates for each bridge component and for culverts. Therefore, maintaining structures in CR 6, 7 or 8 

would presumably result in decreased deterioration rates and longer service lives.  

Although not specifically studied within this research project, other research conducted with MoDOT and 

other states, combined with practical experience, indicates that the primary damage mode affecting steel 

bridges is corrosion damage[16, 17]. The corrosion damage most commonly occurs in the area below joints 

that are leaking, causing coatings to fail and initiating corrosion damage. As a result, the CR drops over 

time as corrosion damage becomes more advanced.  

It was also shown in the research that the application of deicing chemical (salt) increases the deterioration 

of structures significantly. Consequently, one of the most impactful actions that could be taken would be to 

reduce the amount of salt used OR reduce exposure of structural components to salt. Preservation strategies 

such as maintaining leak-free joints and spot or zone painting to repair deteriorating coatings would help 

maintain structures in the fair to good condition and avoid the rapid deterioration. Previous research also 

illustrated that zone maintenance painting with Calcium Sulphonate, a coating that can be easily applied in 

the field, was effective in preventing corrosion damage if the joint was also repaired to prevent water and 

deicing chemicals from coming in repeated contact with the superstructure [17].  

Preservation strategies that would be beneficial include many that MoDOT is already performing on at least 

a portion of the inventory. Application of penetrating sealers for bridge decks, sealers or protective coating 

for concrete components as shown in Figure 23, and protective overlays on bridge decks are suitable 

preservation strategies. Regular bridge washing on an annual basis in the spring to clean away residual salts, 

and repair and sealing of all joints would also be suitable preservation strategies. The timely repair of bridge 

joints would likely be the among the most beneficial actions to prevent deterioration of the superstructure 

and substructure of a bridge. It is notable that the effect of salt application was most pronounced for the 

deterioration of substructure components. Substructure components are directly exposed to salt as a result 

of deck drainage, either through leaking joints or inadequate deck drainage systems. The results of the study 

suggest that the concentration of deck drainage onto substructures has a measurable deleterious effect. 

Superstructure components were significantly affected by salt application, which may also be the result of 

exposure to deicing chemicals through poor drainage or leaking joints. Zone and spot painting of steel to 

prevent corrosion damage would allow for preservation treatments in the area leading joints or other 

drainage issues exposing the superstructure components to deicing chemical. This is likely to provide 

measurable near-term benefits by slowing the deterioration of superstructure components.  
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Figure 23. Example of a concrete coating applied to beam shelf under expansion joint to protect 
concrete substructure, Fulton, MO. 

In addition, improved data collection regarding preservation treatments or surface protecting coating 

systems would be beneficial for quantifying the effectiveness of preservation strategies. The research 

provided good rationale for preservation actions to prevent the CR decline into the 5 – 3 range. An improved 

tracking system for various treatments and exactly what is done when, and considering the district weather 

conditions and salt applications in combination with the treatment, would allow for optimization of 

preservation strategies looking forward. The impact of the new data collection would be to demonstrate the 

effectiveness of the policy or practice, or the ineffectiveness, and the impact on the CR and subsequent 

decision making could be quantified.  

Recommendation 2: Perform a best-practices survey for PSC box beam bridges. 

 PSC box beams and CIP decks on box beams have the most rapid deterioration characteristics of 

any structure studied. 

PSC box beam bridges had poor performance characteristics, both in terms of superstructure deterioration 

and deterioration of decks constructed on PSC box girders. The research showed that PSC box beam bridges 

and CIP decks on PSC box beam bridges deteriorate more rapidly than any other components or culverts. 

To improve the performance, MoDOT may want to conduct a survey of other states to determine the best 

practices for the construction of these bridge types. It may be that specific details or technologies are 

available to improve the performance of these types of bridges and a best-practices study could reveal 

methods or specifications to improve the performance of these structures. The RT notes that problems with 
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PSC box beam bridges are neither new nor unique to Missouri, and such a study may not provide effective 

solutions.  

Recommendation 3: Consider impact of parameters studied for bridge type and geometry selection 

during preliminary design. 

 It was found that span length has a negative impact on reliability.  

 Substructures over water deteriorate more rapidly than substructures not on waterways. 

 Exposure to deicing chemical presents the greatest hazard. 

Selection of bridge type and geometry at the design level is a complex interaction of many different needs 

and options to design an economical and efficient combination of materials and geometry. . Although the 

results of this research did not provide clear guidance on one bridge type over another, the results should 

be included as a consideration at the early design phases when selecting materials and geometry. 

Specifically, increasing the span length results in an increased rate of deterioration, and this should be 

considered as a factor in the life-cycle cost estimation. Substructures over waterways deteriorated more 

rapidly than substructures not on waterways, so avoiding placing abutments and piers in the water rather 

than adjacent to the water, where practical, should be a consideration. Finally, exposure to deicing chemical 

(salt) is the greatest driver for deterioration. Consequently, jointless bridges would be preferred to reduce 

exposure. Efficient and maintainable drainage systems for decks are also an important factor for the design 

of durable structures, as well as reliable bridge joints that prevent leakage.  

It should be noted that this recommendation is consistent with some current MoDOT practices and not 

completely new information. The quantitative analysis included in this research verifies engineering 

experience and judgement. Increasing use of jointless bridges, extending scuppers below the bottom flange, 

and coating the bearing areas of weathering steel bridges would be examples of current practices that are 

supported by the data from this study.  

Recommendation 4: Improve monitoring of salt application.   

 Application of deicing chemical (salt) is the most significant driver for deterioration of all 

structures studied.  

As detailed in this report, the application of salt to components such as the bridge deck was a key player in 

long-term performance and the life of the deck before maintenance or replacement was required. In this 

study several assumptions were taken into account as previously detailed regarding the use and application 

of salt equally over respective lane miles in each county and district based on salt storage data provided by 

MoDOT. The RT encourages MoDOT to consider the use of technology to more precisely monitor when 

highway salts and other treatments used to prevent or limit ice buildup are applied to both bridge decks and 
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highway pavements. The use of a mobile app that tracks the date, time, and route that the driver is applying 

salt or other treatment to the deck/highway surface will allow future NBI-related deterioration work to 

further refine deterioration modeling. More sophisticated techniques that also monitor the application rate 

and surface temperature may allow future research studies and researchers to further understand the most 

effective use of salt application in terms of timing, and cost optimization, while minimizing long-term 

deterioration to bridge decks, components, and highway pavement. This proposed work is a recommended 

follow up study that also examines improvements in the NBI deterioration study undertaken in this study. 

Some existing applications that can track driving routes and time frames work with GPS-enabled phones 

that MoDOT salt application crews likely carry are shown below:  

• Protrack GPS 

• Route4Me Route Planner 

• In Route Planner & GPS Navigator 

• Waze GPS Navigation, Maps and Social Traffic 

• Footpath Route Planner 

• Map My Customers – Pin Mapping and Route Planning 

Many of these existing applications that can track routes in real time have route-saving features where 

MoDOT could save and download the routes that drivers have taken. This could improve the understanding 

of where and when salt applications have occurred, and result in the total usage being more precisely known. 

Such data could improve the quality and accuracy of bridge deterioration models.  

An in-house developed app in combination with a monitoring process could also be developed by MoDOT 

to more precisely monitor drop rates (i.e., salt concentration levels), surface temperatures, and more. 

Certainly, a pilot study using a commercially available app could be step one. In the RT’s literature review, 

the team found no readily available information on monitoring salt application to bridge decks or highway 

pavement at any significant level. While the data provided by MoDOT to the RT was very valuable and the 

team found that salt is a major player in bridge deterioration, particularly the bridge deck, extrapolating the 

storage tonnage usage of salt and assuming even distribution over lane miles certainly lacks precision and 

improved monitoring methods of salt usage is warranted. These data could provide insight into where 

preservation actions would yield that highest cost/benefit ratio and be most effective for extending the life 

of structures.  

It should also be noted that other states have begun to collect more specific information on the rates of salt 

application across their inventory. A study of best practices in other states may provide some practical 

solutions for tracking salt application more closely.  
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